Skip to main content

Characterization of Nanoparticles Under Physiological Conditions

  • Chapter
  • First Online:

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 5))

Abstract

In this article, well-established characterization methods for nanoparticles (NPs) are discussed, in particular their application under physiological conditions. The impact of different media, mimicking physiological conditions, on NP stability in terms of physiological ionic strength and formation of the NP–protein corona is described. In order to characterize NPs under physiological conditions, we distinguish between scattering and correlation methods, microscopy-based methods, and methods based on hydrodynamic separation. Features and limitations of relevant characterization methods are reviewed, as well as challenges arising in physiological media from enhanced aggregation tendency and the presence of proteins. We conclude that no available method for NP characterization in physiological media is able to describe the colloidal system completely and satisfactory. On the contrary, combining well-chosen analytical methods by taking benefits and disadvantages into account may provide detailed characterization results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Linsinger T, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson P, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. Publications Office of the European Union JRC73260, ISBN: 978-92-79-25602-8

    Google Scholar 

  2. Williams D (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  CAS  Google Scholar 

  3. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  4. Warheit D (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185

    Article  CAS  Google Scholar 

  5. Israelachvili J (2011) Intermolecular and surface forces. Elsevier/Academic, Amsterdam

    Google Scholar 

  6. Landau L, Lifshitz E, Pitaevskij L (1998) Electrodynamics of continuous media. Butterworth-Heinemann, Oxford, 8

    Google Scholar 

  7. Russel W, Saville D, Schowalter W (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Maskos M, Stauber R (2011) In: Ducheyne P (ed) Comprehensive biomaterials. Elsevier, Oxford

    Google Scholar 

  9. Kasper J, Hermanns M, Bantz C, Koshkina O, Lang T, Maskos M, Pohl C, Unger R, Kirkpatrick C (2013) Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Arch Toxicol 87(6):1053–1065

    Article  CAS  Google Scholar 

  10. Röcker C, Pötzl M, Zhang F, Parak W, Nienhaus G (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580

    Article  CAS  Google Scholar 

  11. Kittler S, Greulich C, Gebauer J, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet J, Vallet-Regi M, Zellner R, Köller M, Epple M (2010) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512

    Article  CAS  Google Scholar 

  12. Cho K, Lee Y, Lee C-H, Lee K, Kim Y, Choi H, Ryu P-D, Lee S, Joo S-W (2008) Selective aggregation mechanism of unmodified gold nanoparticles in detection of single nucleotide polymorphism. J Phys Chem C 112(23):8629–8633

    Article  CAS  Google Scholar 

  13. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  CAS  Google Scholar 

  14. Gebauer J, Treuel L (2011) Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J Colloid Interface Sci 354(2):546–554

    Article  CAS  Google Scholar 

  15. Derjaguin B, Storozhilova A, Rabinovich Y (1966) Experimental verification of the theory of thermophoresis of aerosol particles. J Colloid Interface Sci 21(1):35–58

    Article  Google Scholar 

  16. Holmberg K (2002) Handbook of applied surface and colloid chemistry. Wiley, Chichester

    Google Scholar 

  17. Gregory J (2009) Monitoring particle aggregation processes. Colloids, polymers and surfactants. Special Issue in honour of Brian Vincent, vol 147–148, pp 109–123

    Google Scholar 

  18. Monopoli M, Åberg C, Salvati A, Dawson K (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  CAS  Google Scholar 

  19. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  CAS  Google Scholar 

  20. Oberdörster G (2012) Nanotoxicology: in vitro-in vivo dosimetry. Environ Health Perspect 120(1):A13

    Article  Google Scholar 

  21. Vroman L (1962) Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196(4853):476–477

    Article  CAS  Google Scholar 

  22. Vroman L, Adams A (1969) Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf Sci 16:438–446

    Article  CAS  Google Scholar 

  23. Lynch I, Dawson K (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    Article  CAS  Google Scholar 

  24. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer S, Stauber R (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781

    Article  CAS  Google Scholar 

  25. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson K, Linse S (2007) From the cover: understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055

    Article  CAS  Google Scholar 

  26. Monopoli M, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson K (2011) Physical − chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    Article  CAS  Google Scholar 

  27. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan M, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509

    Article  CAS  Google Scholar 

  28. Casals E, Pfaller T, Duschl A, Oostingh G, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632

    Article  CAS  Google Scholar 

  29. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer S, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber R (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167

    Article  CAS  Google Scholar 

  30. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270

    Article  CAS  Google Scholar 

  31. Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115(37):18275–18283

    Article  CAS  Google Scholar 

  32. Gebauer J, Malissek M, Simon S, Knauer S, Maskos M, Stauber R, Peukert W, Treuel L (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679

    Article  CAS  Google Scholar 

  33. Bharti B, Meissner J, Findenegg G (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27(16):9823–9833

    Article  CAS  Google Scholar 

  34. Bantz C, Koshkina O, Lang T, Galla H-J, Kirkpatrick C, Stauber R, Maskos M (2014) The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol 5:1774–1786

    Article  CAS  Google Scholar 

  35. Calvo P, Remuñán-López C, Vila-Jato J, Alonso M (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132

    Article  CAS  Google Scholar 

  36. Nikolic M, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45(39):6577–6580

    Article  CAS  Google Scholar 

  37. Chen H, Wu X, Duan H, Wang Y, Wang L, Zhang M, Mao H (2009) Biocompatible polysiloxane-containing diblock copolymer PEO- b -PγMPS for coating magnetic nanoparticles. ACS Appl Mater Interfaces 1(10):2134–2140

    Article  CAS  Google Scholar 

  38. Aggarwal P, Hall J, McLeland C, Dobrovolskaia M, McNeil S (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  CAS  Google Scholar 

  39. Dobrovolskaia M, Germolec D, Weaver J (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4(7):411–414

    Article  CAS  Google Scholar 

  40. Salvati A, Pitek A, Monopoli M, Prapainop K, Bombelli F, Hristov D, Kelly P, Aberg C, Mahon E, Dawson K (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  Google Scholar 

  41. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

  42. Lacerda S, Park J, Meuse C, Pristinski D, Becker M, Karim A, Douglas J (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379

    Article  CAS  Google Scholar 

  43. Rausch K, Reuter A, Fischer K, Schmidt M (2010) Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11(11):2836–2839

    Article  CAS  Google Scholar 

  44. Jones C, Grainger D (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–456

    Article  CAS  Google Scholar 

  45. Delgado A, González-Caballero F, Hunter R, Koopal L, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. Elkin 06, International Electrokinetics Conference, June 25–29, Nancy, France 309(2):194–224

    Google Scholar 

  46. Hunter R (1993) Introduction to modern colloid science. Oxford University Press, Oxford

    Google Scholar 

  47. Lyklema J (1995) Fundamentals of interface and colloid science, Solid-liquid interfaces. Elsevier, Amsterdam, p s.1

    Google Scholar 

  48. Antonietti M, Vorwerg L (1997) Examination of the atypical electrophoretic mobility behavior of charged colloids in the low salt region using the O’Brian-White theory. Colloid Polym Sci 275(9):883–887

    Article  CAS  Google Scholar 

  49. O’Brien R, White L (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 74:1607

    Article  Google Scholar 

  50. Mangelsdorf C, White L (1990) Effects of stern-layer conductance on electrokinetic transport properties of colloidal particles. Faraday Trans 86(16):2859

    Article  CAS  Google Scholar 

  51. van Wagenen R, Andrade J (1980) Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Colloid Interface Sci 76(2):305–314

    Article  Google Scholar 

  52. Hayes R, Böhmer M, Fokkink L (1999) A study of silica nanoparticle adsorption using optical reflectometry and streaming potential techniques. Langmuir 15(8):2865–2870

    Article  CAS  Google Scholar 

  53. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  54. Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10(5):415–421

    Article  Google Scholar 

  55. McAlister B, Grady B (2002) The use of Monte-Carlo simulations to calculate small-angle scattering patterns. Macromol Symp 190(1):117–130

    Article  CAS  Google Scholar 

  56. Blanchet C, Svergun D (2013) Small-angle X-Ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem 64(1):37–54

    Article  CAS  Google Scholar 

  57. Heunemann P, Prévost S, Grillo I, Marino C, Meyer J, Gradzielski M (2011) Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter 7(12):5697

    Article  CAS  Google Scholar 

  58. Jensen G, Lund R, Gummel J, Monkenbusch M, Narayanan T, Pedersen J (2013) Direct observation of the formation of surfactant micelles under nonisothermal conditions by synchrotron SAXS. J Am Chem Soc 135(19):7214–7222

    Article  CAS  Google Scholar 

  59. Milani S, Baldelli Bombelli F, Pitek A, Dawson K, Rädler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541

    Article  CAS  Google Scholar 

  60. Jiang X, Weise S, Hafner M, Rocker C, Zhang F, Parak W, Nienhaus G (2009) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7(Suppl_1):S5

    Article  CAS  Google Scholar 

  61. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a New tool for accurate and absolute diffusion measurements. Chemphyschem 8(3):433–443

    Article  CAS  Google Scholar 

  62. Maffre P, Nienhaus K, Amin F, Parak W, Nienhaus G (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383

    Article  CAS  Google Scholar 

  63. Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146

    Article  CAS  Google Scholar 

  64. Treuel L, Malissek M, Gebauer J, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. Chemphyschem 11(14):3093–3099

    Article  CAS  Google Scholar 

  65. Harris J, Roos C, Djalali R, Rheingans O, Maskos M, Schmidt M (1999) Application of the negative staining technique to both aqueous and organic solvent solutions of polymer particles. Micron 30(4):289–298

    Article  CAS  Google Scholar 

  66. Feynman R, Leighton R, Sands M, Gottlieb M, Leighton R (2006) The Feynman lectures on physics. Pearson Addison-Wesley, San Francisco

    Google Scholar 

  67. Adrian M, Dubochet J, Lepault J, McDowall A (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36

    Article  CAS  Google Scholar 

  68. Mueller W, Koynov K, Fischer K, Hartmann S, Pierrat S, Basché T, Maskos M (2009) Hydrophobic shell loading of PB- b -PEO vesicles. Macromolecules 42(1):357–361

    Article  CAS  Google Scholar 

  69. Milne J, Borgnia M, Bartesaghi A, Tran E, Earl L, Schauder D, Lengyel J, Pierson J, Patwardhan A, Subramaniam S (2013) Cryo-electron microscopy–a primer for the non-microscopist. FEBS J 280(1):28–45

    Article  CAS  Google Scholar 

  70. Hamley I, Castelletto V, Fundin J, Yang Z, Crothers M, Attwood D, Talmon Y (2004) Cryo-TEM imaging of block copolymer micelles containing solubilized liquid crystal. Colloid Polym Sci 282(5):514–517

    Article  CAS  Google Scholar 

  71. Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20(15):6085–6088

    Article  CAS  Google Scholar 

  72. Binnig G, Quate C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  73. Magonov S, Elings V, Whangbo M-H (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375(2–3):L385

    Article  CAS  Google Scholar 

  74. Haeberle W, Pantea M, Hoerber J (2006) Nanometer-scale heat-conductivity measurements on biological samples. In: Proceedings of the seventh international conference on scanning probe microscopy, sensors and nanostructures 106(8–9):678–686

    Google Scholar 

  75. Berger R, Butt H-J, Retschke M, Weber S (2009) Electrical modes in scanning probe microscopy. Macromol Rapid Commun 30(14):1167–1178

    Article  CAS  Google Scholar 

  76. Giessibl F (1995) Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267(5194):68–71

    Article  CAS  Google Scholar 

  77. Jarvis S, Sader J, Fukuma T (2008) In: Bhushan B, Fuchs H, Tomitori M (eds) Applied scanning probe methods VIII. Springer, Berlin, Heidelberg

    Google Scholar 

  78. Gurevich L, Fojan P, Saxena R, Petersen S (2006) Mounting proteins on metal nanoparticles: statistical analysis of AFM images. 2006 NSTI Nanotechnology Conference and Trade Show, Boston, May 7–11, 2006. Nano Science and Technology Institute, Boston

    Google Scholar 

  79. MacCuspie R (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13(7):2893–2908

    Article  CAS  Google Scholar 

  80. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152

    Article  CAS  Google Scholar 

  81. Pyrgiotakis G, Blattmann C, Pratsinis S, Demokritou P (2013) Nanoparticle–nanoparticle interactions in biological media by atomic force microscopy. Langmuir 29(36):11385–11395

    Article  CAS  Google Scholar 

  82. Schaefer J, Schulze C, Marxer E, Schaefer U, Wohlleben W, Bakowsky U, Lehr C-M (2012) Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6(6):4603–4614

    Article  CAS  Google Scholar 

  83. Gildings J (1968) Nonequilibrium theory of field-flow fractionation. J Chem Phys 49(1):81–85

    Article  Google Scholar 

  84. Giddings J (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260(5113):1456–1465

    Article  CAS  Google Scholar 

  85. Schimpf M, Caldwell K, Giddings J (2000) Field-flow fractionation handbook. Wiley-Interscience, New York, Chichester

    Google Scholar 

  86. Wahlund K, Giddings J (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59(9):1332–1339

    Article  CAS  Google Scholar 

  87. Hovingh M, Thompson G, Giddings J (1970) Column parameters in thermal field-flow fractionation. Anal Chem 42(2):195–203

    Article  CAS  Google Scholar 

  88. Giddings J (1973) The conceptual basis of field-flow fractionation. J Chem Educ 50(10):667

    Article  CAS  Google Scholar 

  89. Davis J, Giddings J (1986) Feasibility study of dielectrical field-flow fractionation. Sep Sci Technol 21(9):969–989

    Article  CAS  Google Scholar 

  90. Lang T, Eslahian K, Maskos M (2012) Ion effects in field-flow fractionation of aqueous colloidal polystyrene. Macromol Chem Phys 213(22):2353–2361

    Article  CAS  Google Scholar 

  91. Andreev V, Stefanovich L (1993) Theory of field-flow fractionation with the reversible adsorption on channel walls. Chromatographia 37(5–6):325–328

    Article  CAS  Google Scholar 

  92. Gigault J, Le Hécho I, Dubascoux S, Potin-Gautier M, Lespes G (2010) Single walled carbon nanotube length determination by asymmetrical-flow field-flow fractionation hyphenated to multi-angle laser-light scattering. J Chromatogr A 1217(50):7891–7897

    Article  CAS  Google Scholar 

  93. Hagendorfer H, Kaegi R, Traber J, Mertens S, Scherrers R, Ludwig C, Ulrich A (2011) Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization – prospects and limitations demonstrated on Au nanoparticles. Anal Chim Acta 706(2):367–378

    Article  CAS  Google Scholar 

  94. Jungmann N, Schmidt M, Maskos M (2001) Characterization of polyorganosiloxane nanoparticles in aqueous dispersion by asymmetrical flow field-flow fractionation. Macromolecules 34(23):8347–8353

    Article  CAS  Google Scholar 

  95. Rambaldi D, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399(4):1439–1447

    Article  CAS  Google Scholar 

  96. Arfvidsson C, Wahlund K-G (2003) Time-minimized determination of ribosome and tRNA levels in bacterial cells using flow field–flow fractionation. Anal Biochem 313(1):76–85

    Article  CAS  Google Scholar 

  97. Wittgren B, Wahlund K-G, Andersson M, Arfvidsson C (2002) Polysaccharide characterization by flow field-flow fractionation-multiangle light scattering: initial studies of modified starches. Int J Polym Anal Char 7(1–2):19–40

    Article  CAS  Google Scholar 

  98. Li J, Zhong W (2008) A two-dimensional suspension array system by coupling field flow fractionation to flow cytometry. J Chromatogr A 1183(1–2):143–149

    Article  CAS  Google Scholar 

  99. Ashby J, Schachermeyer S, Pan S, Zhong W (2013) Dissociation-based screening of nanoparticle–protein interaction via flow field-flow fractionation. Anal Chem 85(15):7494–7501

    Article  CAS  Google Scholar 

  100. Runyon J, Goering A, Yong K-T, Williams S (2013) Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface Plasmon resonance. Anal Chem 85(2):940–948

    Article  CAS  Google Scholar 

  101. Rolland-Sabaté A, Mendez-Montealvo M, Colonna P, Planchot V (2008) Online determination of structural properties and observation of deviations from power law behavior. Biomacromolecules 9(7):1719–1730

    Article  CAS  Google Scholar 

  102. Ehrhart J, Mingotaud A-F, Violleau F (2011) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A 1218(27):4249–4256

    Article  CAS  Google Scholar 

  103. Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth J, Bender Koch C, Larsen E (2011) Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem 83(7):2461–2468

    Article  CAS  Google Scholar 

  104. Prestel H, Niessner R, Panne U (2006) Increasing the sensitivity of asymmetrical flow field-flow fractionation: slot outlet technique. Anal Chem 78(18):6664–6669

    Article  CAS  Google Scholar 

  105. Knappe P, Boehmert L, Bienert R, Karmutzki S, Niemann B, Lampen A, Thünemann A (2011) Processing nanoparticles with A4F-SAXS for toxicological studies: iron oxide in cell-based assays. J Chromatogr A 1218(27):4160–4166

    Article  CAS  Google Scholar 

  106. Maskos M, Schupp W (2003) Circular asymmetrical flow field-flow fractionation for the semipreparative separation of particles. Anal Chem 75(22):6105–6108

    Article  CAS  Google Scholar 

  107. Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. J Polym Sci B Polym Lett 5(9):753–759

    Article  Google Scholar 

  108. Hagel L, Lundström H, Andersson T, Lindblom H (1989) Properties, in theory and practice, of novel gel filtration media for standard liquid chromatography. J Chromatogr A 476:329–344

    Article  CAS  Google Scholar 

  109. Siebrands T, Giersig M, Mulvaney P, Fischer C (1993) Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 9(9):2297–2300

    Article  CAS  Google Scholar 

  110. Al-Somali A, Krueger K, Falkner J, Colvin V (2004) Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal Chem 76(19):5903–5910

    Article  CAS  Google Scholar 

  111. Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123

    Article  CAS  Google Scholar 

  112. Sperling R, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-A, Chang W, Braun D, Parak W (2007) Size determination of (Bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J Phys Chem C 111(31):11552–11559

    Article  CAS  Google Scholar 

  113. Wei G-T, Liu F-K, Wang C (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71(11):2085–2091

    Article  CAS  Google Scholar 

  114. Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885

    Article  CAS  Google Scholar 

  115. Pellegrino T, Sperling R, Alivisatos A, Parak W (2007) Gel electrophoresis of gold-DNA nanoconjugates. J Biomed Biotech 2007

    Google Scholar 

  116. Shapiro A, Viñuela E, Maizel JV Jr (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28(5):815–820

    Article  CAS  Google Scholar 

  117. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Bio Chem 244(16):4406–4412

    CAS  Google Scholar 

  118. Planken K, Cölfen H (2010) Analytical ultracentrifugation of colloids. Nanoscale 2(10):1849

    Article  CAS  Google Scholar 

  119. Akbulut O, Mace C, Martinez R, Kumar A, Nie Z, Patton M, Whitesides G (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064

    Article  CAS  Google Scholar 

  120. Schachman H (1959) Ultracentrifugation in biochemistry. Academic, New York

    Google Scholar 

  121. Liu J, Shire S (1999) Analytical ultracentrifugation in the pharmaceutical industry. J Pharm Sci 88(12):1237–1241

    Article  CAS  Google Scholar 

  122. Scott D, Harding S, Rowe A (2005) Analytical ultracentrifugation. RSC, Cambridge

    Book  Google Scholar 

  123. Domingos R, Baalousha M, Ju-Nam Y, Reid M, Tufenkji N, Lead J, Leppard G, Wilkinson K (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43(19):7277–7284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eslahian, K.A. et al. (2014). Characterization of Nanoparticles Under Physiological Conditions. In: Wegener, J. (eds) Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, vol 5. Springer, Cham. https://doi.org/10.1007/11663_2014_10

Download citation

Publish with us

Policies and ethics