Skip to main content

Single Molecule Nano-Bioscience

  • Conference paper
  • 598 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3853))

Abstract

Biomolecules assemble to form molecular machines such as molecular motors, cell signal processors, DNA transcription processors and protein synthesizers to fulfill their functions. Their collaboration allows the activity of biological systems. The reactions and behaviors of molecular machines vary flexibly while responding to their surroundings. This flexibility is essential for biological organisms. The underlying mechanism of molecular machines is not as simple as that expected from analogy with man-made machines. Since molecular machines are only nanometers in size and has a flexible structure, it is very prone to thermal agitation. Furthermore, the input energy level is not much difference from average thermal energy, kBT. Molecular machines can thus operate under the strong influence of this thermal noise, with a high efficiency of energy conversion. They would not overcome thermal noise but effectively use it for their functions. This is in sharp contrast to man-made machines that operate at energies much higher than the thermal noise. In recent years, the single molecule detection (SMD) and nano-technologies have rapidly been expanding to include a wide range of life science. The dynamic properties of biomolecules and the unique operations of molecular machines, which were previously hidden in averaged ensemble measurements, have now been unveiled. The aim of our research is to approach the engineering principle of adaptive biological system by uncovering the unique operation of biological molecular machines. I survey our SMD experiments designed to investigate molecular motors, enzyme reactions, protein dynamics, DNA transcription and cell signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanagida, T. (2006). Single Molecule Nano-Bioscience. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_3

Download citation

  • DOI: https://doi.org/10.1007/11613022_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31253-6

  • Online ISBN: 978-3-540-32438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics