Skip to main content

DNA Hybridization Catalysts and Catalyst Circuits

  • Conference paper
Book cover DNA Computing (DNA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3384))

Included in the following conference series:

Abstract

Practically all of life’s molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalysis of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in DNA nanotechnology as it is in biology. Here we present experimental results on the control of the decay rates of a metastable DNA “fuel”. We show that the fuel complex can be induced to decay with a rate about 1600 times faster than it would decay spontaneously. The original DNA hybridization catalyst [15] achieved a maximal speed-up of roughly 30. The fuel complex discussed here can therefore serve as the basic ingredient for an improved DNA hybridization catalyst. As an example application for DNA hybridization catalysts, we propose a method for implementing arbitrary digital logic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmi, N., Balkhi, S.R., Breaker, R.R.: Cleaving DNA with DNA. Proceedings of the National Academy of Sciences 95, 2233–2237 (1998)

    Article  Google Scholar 

  2. Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  3. Gesteland, R.F., Cech, T.R., Atkins, J.F.: The RNA world. Cold Spring Harbor Laboratory Press, New York (1999)

    Google Scholar 

  4. Green, C., Tibbetts, C.: Reassociation rate-limited displacement of DNA strands by branch migration. Nucleic Acids Research 9, 1905–1918 (1981)

    Article  Google Scholar 

  5. Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)

    Article  Google Scholar 

  6. Mao, C.D., Sun, W.Q., Shen, Z.Y., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999)

    Article  Google Scholar 

  7. Niemeyer, C.M., Adler, M.: Nanomechanical devices based on DNA. Angewandte Chemie International Edition 41(20), 3779–3783 (2002)

    Article  Google Scholar 

  8. Panyutin, I.G., Biswas, I., Hsieh, P.: A pivotal role for the structure of the Holliday junction in DNA branch migration. The EMBO Journal 14(8), 1819–1826 (1995)

    Google Scholar 

  9. Panyutin, I.G., Hsieh, P.: Kinetics of spontaneous DNA branch migration. Proceedings of the National Academy of Sciences 91, 2021–2025 (1994)

    Article  Google Scholar 

  10. Radding, C., Beattie, K., Holloman, W., Wiegand, R.: Uptake of homologous single-stranded fragments by superhelical DNA. IV. branch migration. J. Mol. Biol. 166, 825–839 (1977)

    Article  Google Scholar 

  11. Santoro, S.W., Joyce, G.F.: A general purpose DNA cleaving RNA enzyme. Proceedings of the National Academy of Sciences USA 94, 4262–4266 (1997)

    Article  Google Scholar 

  12. Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Letters 4(7), 1203–1207 (2004)

    Article  Google Scholar 

  13. Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. Journal of the American Chemical Society 126(35), 10834–10835 (2004)

    Article  Google Scholar 

  14. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. Journal of the American Chemical Society 124, 3555–3561 (2002)

    Article  Google Scholar 

  15. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Physical Review Letters 90(11), 118102–1–4 (2003)

    Article  Google Scholar 

  16. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  17. Wong, D.M., Weinstock, P.H., Wetmur, J.G.: Branch capture reactions: displacers derived from asymmetric PCR. Nucleic Acids Research 19, 2251–2259 (1991)

    Article  Google Scholar 

  18. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genetic Programming and Evolvable Machines 4, 111–122 (2003)

    Article  Google Scholar 

  19. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  20. Zhang, D.Y., Schaeffer, J.: Personal communication (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seelig, G., Yurke, B., Winfree, E. (2005). DNA Hybridization Catalysts and Catalyst Circuits. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_29

Download citation

  • DOI: https://doi.org/10.1007/11493785_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26174-2

  • Online ISBN: 978-3-540-31844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics