Skip to main content

CLC chloride channels and transporters: a biophysical and physiological perspective

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 158))

Abstract

Chloride-transporting proteins play fundamental roles in many tissues in the plasma membrane as well as in intracellular membranes. They have received increasing attention in the last years because crucial, and often unexpected and novel, physiological functions have been disclosed with gene-targeting approaches, X-ray crystallography, and biophysical analysis. CLC proteins form a gene family that comprises nine members in mammals, at least four of which are involved in human genetic diseases. The X-ray structure of the bacterial CLC homolog, ClC-ec1, revealed a complex fold and confirmed the anticipated homodimeric double-barreled architecture of CLC-proteins with two separate Cl ion transport pathways, one in each subunit. Four of the mammalian CLC proteins, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, are chloride ion channels that fulfill their functional roles—stabilization of the membrane potential, transepithelial salt transport, and ion homeostasis—in the plasma membrane. The other five CLC proteins are predominantly expressed in intracellular organelles like endosomes and lysosomes, where they are probably important for a proper luminal acidification, in concert with the V-type H+-ATPase. Surprisingly, ClC-4, ClC-5, and probably also ClC-3, are not Cl ion channels but exhibit significant Cl/H+ antiporter activity, as does the bacterial homolog ClC-ec1 and the plant homolog AtCLCa. The physiological significance of the Cl/H+ antiport activity remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    PubMed  CAS  Google Scholar 

  • Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest 103:667–673

    PubMed  CAS  Google Scholar 

  • Accardi A, Ferrera L, Pusch M (2001) Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S. J Physiol 534:745–752

    PubMed  CAS  Google Scholar 

  • Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–807

    PubMed  CAS  Google Scholar 

  • Accardi A, Pusch M (2000) Fast and slow gating relaxations in the muscle chloride channel CLC-1. J Gen Physiol 116:433–444

    PubMed  CAS  Google Scholar 

  • Accardi A, Pusch M (2003) Conformational changes in the pore of CLC-0. J Gen Physiol 122:277–293

    PubMed  CAS  Google Scholar 

  • Accardi A, Walden M, Nguitragool W, Jayaram H, Williams C, Miller C (2005) Separate ion pathways in a Cl/H+ exchanger. J Gen Physiol 126:563–570.

    PubMed  CAS  Google Scholar 

  • Adrian RH, Bryant SH (1974) On the repetitive discharge in myotonic muscle fibres. J Physiol 240:505–515

    PubMed  CAS  Google Scholar 

  • Armstrong CM (1966) Time course of TEA+-induced anomalous rectification in squid giant axons. J Gen Physiol 50:491–503

    PubMed  CAS  Google Scholar 

  • Aromataris EC, Astill DS, Rychkov GY, Bryant SH, Bretag AH, Roberts ML (1999) Modulation of the gating of ClC-1 by S-(−) 2-(4-chlorophenoxy)propionic acid. Br J Pharmacol 126:1375–1382

    PubMed  CAS  Google Scholar 

  • Aromataris EC, Rychkov GY, Bennetts B, Hughes BP, Bretag AH, Roberts ML (2001) Fast and slow gating of CLC-1:differential effects of 2-(4-chlorophenoxy)propionic acid and dominant negative mutations. Mol Pharmacol 60:200–208

    PubMed  CAS  Google Scholar 

  • Arreola J, Begenisich T, Melvin JE (2002) Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons. J Physiol 541:103–112

    PubMed  CAS  Google Scholar 

  • Arreola J, Melvin JE (2003) A novel chloride conductance activated by extracellular ATP in mouse parotid acinar cells. J Physiol 547:197–208

    PubMed  CAS  Google Scholar 

  • Bali M, Lipecka J, Edelman A, Fritsch J (2001) Regulation of ClC-2 chloride channels in T84 cells by TGF-α. Am J Physiol Cell Physiol 280:C1588-C1598

    PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J, Maurel C (2000) Anion channels in higher plants:functional characterization, molecular structure and physiological role. Biochim Biophys Acta 1465:199–218

    PubMed  CAS  Google Scholar 

  • Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22:12–13

    PubMed  CAS  Google Scholar 

  • Bauer CK, Steinmeyer K, Schwarz JR, Jentsch TJ (1991) Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc Natl Acad Sci USA 88:11052–11056

    PubMed  CAS  Google Scholar 

  • Becker PE (1957) Zur Frage der Heterogenie der erblichen Myotonien. Nervenarzt 28:455–460

    PubMed  CAS  Google Scholar 

  • Bennekou P, de Franceschi L, Pedersen O, Lian L, Asakura T, Evans G, Brugnara C, Christophersen P (2001) Treatment with NS3623, a novel Cl− conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice:a possible new therapeutic approach for sickle cell disease. Blood 97:1451–1457

    PubMed  CAS  Google Scholar 

  • Bennetts B, Roberts ML, Bretag AH, Rychkov GY (2001) Temperature dependence of human muscle ClC-1 chloride channel. J Physiol 535:83–93

    PubMed  CAS  Google Scholar 

  • Bennetts B, Rychkov GY, Ng H-L, Morton CJ, Stapleton D, Parker MW, Cromer BA (2005) Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels. J Biol Chem 280:32452–32458

    PubMed  CAS  Google Scholar 

  • Berg J, Jiang H, Thornton CA, Cannon SC (2004) Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current. Neurology 63:2371–2375

    PubMed  CAS  Google Scholar 

  • Birkenhäger R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    PubMed  Google Scholar 

  • Bisset D, Corry B, Chung SH (2005) The fast gating mechanism in ClC-0 channels. Biophys J 89:179–186

    PubMed  CAS  Google Scholar 

  • Blaisdell CJ, Edmonds RD, Wang XT, Guggino S, Zeitlin PL (2000) pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol 278:L1248–L1255

    PubMed  CAS  Google Scholar 

  • Bösl MR, Stein V, Hübner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J 20:1289–1299

    PubMed  Google Scholar 

  • Brandt S, Jentsch TJ (1995) ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett 377:15–20

    PubMed  CAS  Google Scholar 

  • Bretag AH (1987) Muscle chloride channels. Physiol Rev 67:618–724

    PubMed  CAS  Google Scholar 

  • Cannon SC (2000) Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kidney Int 57:772–779

    PubMed  CAS  Google Scholar 

  • Carr G, Simmons NL, Sayer JA (2006) Disruption of clc-5 leads to a redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells. Cell Mol Life Sci 63:367–377

    PubMed  CAS  Google Scholar 

  • Catalán M, Cornejo I, Figueroa CD, Niemeyer MI, Sepúlveda FV, Cid LP (2002) ClC-2 in guinea pig colon:mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 283:G1004-G1013

    PubMed  Google Scholar 

  • Catalán M, Niemeyer MI, Cid LP, Sepúlveda FV (2004) Basolateral ClC-2 chloride channels in surface colon epithelium:regulation by a direct effect of intracellular chloride. Gastroenterology 126:1104–1114

    PubMed  Google Scholar 

  • Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53

    Google Scholar 

  • Chen MF, Chen TY (2001) Different fast-gate regulation by external Cl and H+ of the muscle- type ClC chloride channels. J Gen Physiol 118:23–32

    PubMed  CAS  Google Scholar 

  • Chen MF, Chen TY (2003) Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J Gen Physiol 122:133–145

    PubMed  CAS  Google Scholar 

  • Chen MF, Niggeweg R, Iaizzo PA, Lehmann-Horn F, Jockusch H (1997) Chloride conductance in mouse muscle is subject to post-transcriptional compensation of the functional Cl channel 1 gene dosage. J Physiol 504:75–81

    PubMed  CAS  Google Scholar 

  • Chen TY (1998) Extracellular zinc ion inhibits ClC-0 chloride channels by facilitating slow gating. J Gen Physiol 112:715–726

    PubMed  CAS  Google Scholar 

  • Chen TY (2003) Coupling gating with ion permeation in ClC channels. Sci STKE 2003:pe23

    PubMed  Google Scholar 

  • Chen TY, Chen MF, Lin CW (2003) Electrostatic control and chloride regulation of the fast gating of ClC-0 chloride channels. J Gen Physiol 122:641–651

    PubMed  CAS  Google Scholar 

  • Chen TY, Miller C (1996) Nonequilibrium gating and voltage dependence of the ClC-0 Cl channel. J Gen Physiol 108:237–250

    PubMed  CAS  Google Scholar 

  • Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100:8472–8477

    PubMed  CAS  Google Scholar 

  • Chu S, Blaisdell CJ, Liu M-ZM, Zeitlin PL (1999) Perinatal regulation of the ClC-2 chloride channel in lung is mediated by Sp1 and Sp3. Am J Physiol Lung Cell Mol Physiol 276:L614–L624

    CAS  Google Scholar 

  • Clark S, Jordt SE, Jentsch TJ, Mathie A (1998) Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. J Physiol 506:665–678

    PubMed  CAS  Google Scholar 

  • Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867

    PubMed  CAS  Google Scholar 

  • Cohen J, Schulten K (2004) Mechanism of anionic conduction across ClC. Biophys J 86:836–845

    PubMed  CAS  Google Scholar 

  • Conte-Camerino D, Mambrini M, DeLuca A, Tricarico D, Bryant SH, Tortorella V, Bettoni G (1988) Enantiomers of clofibric acid analogs have opposite actions on rat skeletal muscle chloride channels. Pflügers Arch 413:105–107

    PubMed  CAS  Google Scholar 

  • Corry B, O'Mara M, Chung SH (2004) Conduction mechanisms of chloride ions in ClC-type channels. Biophys J 86:846–860

    PubMed  CAS  Google Scholar 

  • Cupers P, Veithen A, Hoekstra D, Baudhuin P, Courtoy PJ (1997) Three unrelated perturbations similarly uncouple fluid, bulk-membrane, and receptor endosomal flow in rat fetal fibroblasts. Biochem Biophys Res Commun 236:661–664

    PubMed  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) AtCLCa, a proton/nitrate antiporter, mediates nitrate accumulation in plant vacuoles. Nature. In press.

    Google Scholar 

  • de Santiago JA, Nehrke K, Arreola J (2005) Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel. J Gen Physiol 126:591–603

    PubMed  Google Scholar 

  • Dent CE, Friedman M (1964) Hypercalcuric rickets associated with renal tubular damage. Arch Dis Child 39:240–249

    PubMed  CAS  Google Scholar 

  • Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease. Hum Mol Genet 8:247–257

    PubMed  CAS  Google Scholar 

  • Devuyst O, Jouret F, Auzanneau C, Courtoy PJ (2005) Chloride channels and endocytosis:new insights from Dent's disease and ClC-5 knockout mice. Nephron Physiol 99:69–73

    Google Scholar 

  • Dhani SU, Bear CE (2006) Role of intramolecular and intermolecular interactions in ClC channel and transporter function. Pflügers Arch 451:708–715

    PubMed  CAS  Google Scholar 

  • Dhani SU, Mohammad-Panah R, Ahmed N, Ackerley C, Ramjeesingh M, Bear CE (2003) Evidence for a functional interaction between the ClC-2 chloride channel and the retrograde motor dynein complex. J Biol Chem 278:16262–16270

    PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel:molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417–421

    PubMed  CAS  Google Scholar 

  • Duffield M, Rychkov G, Bretag A, Roberts M (2003) Involvement of helices at the dimer interface in ClC-1 common gating. J Gen Physiol 121:149–161

    PubMed  CAS  Google Scholar 

  • Duffield MD, Rychkov GY, Bretag AH, Roberts ML (2005) Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism. J Physiol 568:5–12

    PubMed  CAS  Google Scholar 

  • Dutzler R (2004) The structural basis of ClC chloride channel function. Trends Neurosci 27:315–320

    PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294

    PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    PubMed  CAS  Google Scholar 

  • Edmonds RD, Silva IV, Guggino WB, Butler RB, Zeitlin PL, Blaisdell CJ (2002) ClC-5:ontogeny of an alternative chloride channel in respiratory epithelia. Am J Physiol Lung Cell Mol Physiol 282:L501–L507

    PubMed  CAS  Google Scholar 

  • Eggermont J, Trouet D, Carton I, Nilius B (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem Biophys 35:263–274

    PubMed  CAS  Google Scholar 

  • Embark HM, Bohmer C, Palmada M, Rajamanickam J, Wyatt AW, Wallisch S, Capasso G, Waldegger P, Seyberth HW, Waldegger S, Lang F (2004) Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases. Kidney Int 66:1918–1925

    PubMed  CAS  Google Scholar 

  • Engh AM, Maduke M (2005) Cysteine accessibility in ClC-0 supports conservation of the ClC intracellular vestibule. J Gen Physiol 125:601–617

    PubMed  CAS  Google Scholar 

  • Estévez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414:558–561

    PubMed  Google Scholar 

  • Estévez R, Jentsch TJ (2002) CLC chloride channels:correlating structure with function. Curr Opin Struct Biol 12:531–539

    PubMed  Google Scholar 

  • Estévez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ (2004) Functional and structural conservation of CBS domains from CLC channels. J Physiol 557:363–378

    PubMed  Google Scholar 

  • Estévez R, Schroeder BC, Accardi A, Jentsch TJ, Pusch M (2003) Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 38:47–59

    PubMed  Google Scholar 

  • Faraldo-Gomez JD, Roux B (2004) Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. J Mol Biol 339:981–1000

    PubMed  CAS  Google Scholar 

  • Fisher SE, Black GC, Lloyd SE, Hatchwell E, Wrong O, Thakker RV, Craig IW (1994) Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet 3:2053–2059

    PubMed  CAS  Google Scholar 

  • Fölsch H, Ohno H, Bonifacino JS, Mellman I (1999) A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99:189–198

    PubMed  Google Scholar 

  • Fong P, Rehfeldt A, Jentsch TJ (1998) Determinants of slow gating in ClC-0, the voltage-gated chloride channel of Torpedo marmorata. Am J Physiol Cell Physiol 274:C966–C973

    CAS  Google Scholar 

  • Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747

    PubMed  CAS  Google Scholar 

  • Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902

    PubMed  CAS  Google Scholar 

  • Fuchs R, Ellinger A, Pavelka M, Mellman I, Klapper H (1994) Rat liver endocytic coated vesicles do not exhibit ATP-dependent acidification in vitro. Proc Natl Acad Sci USA 91:4811–4815

    PubMed  CAS  Google Scholar 

  • Furman RE, Barchi RL (1978) The pathophysiology of myotonia produced by aromatic carboxylic acids. Ann Neurol 4:357–365

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ogura T, Katayama Y, Hiraoka M (1998) Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol Cell Physiol 274:C500–C512

    CAS  Google Scholar 

  • Gaxiola RA, Yuan DS, Klausner RD, Fink GR (1998) The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci USA 95:4046–4050

    PubMed  CAS  Google Scholar 

  • Gentzsch M, Cui L, Mengos A, Chang XB, Chen JH, Riordan JR (2003) The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J Biol Chem 278:6440–6449

    PubMed  CAS  Google Scholar 

  • Gill JR Jr, Bartter FC (1978) Evidence for a prostaglandin-independent defect in chloride reabsorption in the loop of Henle as a proximal cause of Bartter's syndrome. Am J Med 65:766–772

    PubMed  CAS  Google Scholar 

  • Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS (1996) Physiology and biochemistry of the kidney vacuolar H+-ATPase. Annu Rev Physiol 58:427–445

    PubMed  CAS  Google Scholar 

  • Greene JR, Brown NH, DiDomenico BJ, Kaplan J, Eide DJ (1993) The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol Gen Genet 241:542–553

    PubMed  CAS  Google Scholar 

  • Gründer S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759–762

    PubMed  Google Scholar 

  • Guggino WB (2004) The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins. Proc Am Thorac Soc 1:28–32

    PubMed  CAS  Google Scholar 

  • Günther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95:8075–8080

    PubMed  Google Scholar 

  • Günther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse—an animal model for Dent's disease. Pflügers Arch 445:456–462

    PubMed  Google Scholar 

  • Gurnett CA, Kahl SD, Anderson RD, Campbell KP (1995) Absence of the skeletal muscle sarcolemma chloride channel ClC-1 in myotonic mice. J Biol Chem 270:9035–9038

    PubMed  CAS  Google Scholar 

  • Gyömörey K, Yeger H, Ackerley C, Garami E, Bear CE (2000) Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 279:C1787–C1794

    PubMed  Google Scholar 

  • Hanke W, Miller C (1983) Single chloride channels from Torpedo electroplax. Activation by protons. J Gen Physiol 82:25–45

    PubMed  CAS  Google Scholar 

  • Hanrahan JW, Wioland MA (2004) Revisiting cystic fibrosis transmembrane conductance regulator structure and function. Proc Am Thorac Soc 1:17–21

    PubMed  CAS  Google Scholar 

  • Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP (1995a) Hypertension caused by a truncated epithelial sodium channel gamma subunit:genetic heterogeneity of Liddle syndrome. Nat Genet 11:76–82

    PubMed  CAS  Google Scholar 

  • Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RP (1995b) A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 92:11495–11499

    PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005a) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–946

    PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS (2005b) ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280:1241–1247

    PubMed  CAS  Google Scholar 

  • Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    PubMed  CAS  Google Scholar 

  • Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, Horvath S, Hallmann K, Dullinger JS, Rau B, Haverkamp F, Beyenburg S, Schulz H, Janz D, Giese B, Muller-Newen G, Propping P, Elger CE, Fahlke C, Lerche H, Heils A (2003) Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 33:527–532

    PubMed  CAS  Google Scholar 

  • Hayama A, Rai T, Sasaki S, Uchida S (2003) Molecular mechanisms of Bartter syndrome caused by mutations in the BSND gene. Histochem Cell Biol 119:485–493

    PubMed  CAS  Google Scholar 

  • Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271:33632–33638

    PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA

    Google Scholar 

  • Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A, Fritsch J (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 290:C45–C56.

    PubMed  CAS  Google Scholar 

  • Holmes KW, Hales R, Chu S, Maxwell MJ, Mogayzel PJ Jr, Zeitlin PL (2003) Modulation of Sp1 and Sp3 in lung epithelial cells regulates ClC-2 chloride channel expression. Am J Respir Cell Mol Biol 29:499–505

    PubMed  CAS  Google Scholar 

  • Hryciw DH, Ekberg J, Ferguson C, Lee A, Wang D, Parton RG, Pollock CA, Yun CC, Poronnik P (2006) Regulation of albumin endocytosis by PSD95/Dlg/ZO-1 (PDZ) scaffolds:interaction of Na+-H+ exchange regulatory factor-2 with ClC-5. J Biol Chem 281:16068–16077

    PubMed  CAS  Google Scholar 

  • Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P (2004) Nedd4-2 functionally interacts with ClC-5:involvement in constitutive albumin endocytosis in proximal tubule cells. J Biol Chem 279:54996–55007

    PubMed  CAS  Google Scholar 

  • Hryciw DH, Ekberg J, Pollock CA, Poronnik P (2005) ClC-5:A chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 3:3

    Google Scholar 

  • Hryciw DH, Wang Y, Devuyst O, Pollock CA, Poronnik P, Guggino WB (2003) Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines. J Biol Chem 278:40169–40176

    PubMed  CAS  Google Scholar 

  • Huber S, Braun G, Schroppel B, Horster M (1998) Chloride channels ClC-2 and ICln mRNA expression differs in renal epithelial ontogeny. Kidney Int Suppl 67:S149–S151

    PubMed  CAS  Google Scholar 

  • Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    PubMed  Google Scholar 

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    PubMed  CAS  Google Scholar 

  • Hunter M (2001) Accessory to kidney disease. Nature 414:502–503

    PubMed  CAS  Google Scholar 

  • Hutter OF, Warner AE (1967) Action of some foreign cations and anions on the chloride permeability of frog muscle. J Physiol 189:445–460

    PubMed  CAS  Google Scholar 

  • Iyer R, Iverson TM, Accardi A, Miller C (2002) A biological role for prokaryotic ClC chloride channels. Nature 419:715–718

    PubMed  CAS  Google Scholar 

  • Jeck N, Waldegger P, Doroszewicz J, Seyberth H, Waldegger S (2004a) A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int 65:190–197

    PubMed  CAS  Google Scholar 

  • Jeck N, Waldegger S, Lampert A, Boehmer C, Waldegger P, Lang PA, Wissinger B, Friedrich B, Risler T, Moehle R, Lang UE, Zill P, Bondy B, Schaeffeler E, Asante-Poku S, Seyberth H, Schwab M, Lang F (2004b) Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension 43:1175–1181

    PubMed  CAS  Google Scholar 

  • Jentsch TJ (2000) Neuronal KCNQ potassium channels:physiology and role in disease. Nat Rev Neurosci 1:21–30

    PubMed  CAS  Google Scholar 

  • Jentsch TJ (2005) Chloride transport in the kidney:lessons from human disease and knockout mice. J Am Soc Nephrol 16:1549–1561

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Friedrich T, Schriever A, Yamada H (1999) The CLC chloride channel family. Pflügers Arch 437:783–795

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Maritzen T, Zdebik AA (2005a) Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 115:2039–2046

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Neagoe I, Scheel O (2005b) CLC chloride channels and transporters. Curr Opin Neurobiol 15:319–325

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Poet M, Fuhrmann JC, Zdebik AA (2005c) Physiological functions of CLC Cl channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 67:779–807

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514

    PubMed  CAS  Google Scholar 

  • Jordt SE, Jentsch TJ (1997) Molecular dissection of gating in the ClC-2 chloride channel. EMBO J 16:1582–1592

    PubMed  CAS  Google Scholar 

  • Karsdal MA, Henriksen K, Sørensen MG, Gram J, Schaller S, Dziegiel MH, Heegaard AM, Christophersen P, Martin TJ, Christiansen C, Bollerslev J (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476

    PubMed  CAS  Google Scholar 

  • Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M, Kornak U, Jentsch TJ (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Uchida S, Monkawa T, Miyawaki A, Mikoshiba K, Marumo F, Sasaki S (1994) Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron 12:597–604

    PubMed  CAS  Google Scholar 

  • Kibble JD, Trezise AE, Brown PD (1996) Properties of the cAMP-activated Cl current in choroid plexus epithelial cells isolated from the rat. J Physiol 496:69–80

    PubMed  CAS  Google Scholar 

  • Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ (1994) Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci USA 91:6943–6947

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F (2001) Developmental expression of CLC-K1 in the postnatal rat kidney. Histochem Cell Biol 116:49–56

    PubMed  CAS  Google Scholar 

  • Kokubo Y, Iwai N, Tago N, Inamoto N, Okayama A, Yamawaki H, Naraba H, Tomoike H (2005) Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population—the Suita Study. Circ J 69:138–142

    PubMed  CAS  Google Scholar 

  • Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459

    PubMed  CAS  Google Scholar 

  • Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    PubMed  CAS  Google Scholar 

  • Kornak U, Ostertag A, Branger S, Benichou O, de Vernejoul MC (2006) Polymorphisms in the CLCN7 gene modulate bone density in postmenopausal women and in patients with autosomal dominant osteopetrosis type II. J Clin Endocrinol Metab 91:995–1000

    PubMed  CAS  Google Scholar 

  • Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297

    PubMed  CAS  Google Scholar 

  • Kürz L, Wagner S, George AL Jr, Rüdel R (1997) Probing the major skeletal muscle chloride channel with Zn2+ and other sulfhydryl-reactive compounds. Pflügers Arch 433:357–363

    PubMed  Google Scholar 

  • Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC (2006) ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440:220–223

    PubMed  CAS  Google Scholar 

  • Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM (2005) Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc Natl Acad Sci USA 102:18932–18937

    PubMed  CAS  Google Scholar 

  • Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    PubMed  CAS  Google Scholar 

  • Li X, Shimada K, Showalter LA, Weinman SA (2000) Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells. J Biol Chem 275:35994–35998

    PubMed  CAS  Google Scholar 

  • Li X, Wang T, Zhao Z, Weinman SA (2002) The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am J Physiol Cell Physiol 282:C1483–C1491

    PubMed  CAS  Google Scholar 

  • Liantonio A, Accardi A, Carbonara G, Fracchiolla G, Loiodice F, Tortorella P, Traverso S, Guida P, Pierno S, De Luca A, Camerino DC, Pusch M (2002) Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid. Mol Pharmacol 62:265–271

    PubMed  CAS  Google Scholar 

  • Liantonio A, De Luca A, Pierno S, Didonna MP, Loiodice F, Fracchiolla G, Tortorella P, Antonio L, Bonerba E, Traverso S, Elia L, Picollo A, Pusch M, Conte Camerino D (2003) Structural requisites of 2-(p-chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1. Br J Pharmacol 139:1255–1264

    PubMed  CAS  Google Scholar 

  • Liantonio A, Picollo A, Babini E, Carbonara G, Fracchiolla G, Loiodice F, Tortorella V, Pusch M, Camerino DC (2006) Activation and inhibition of kidney CLC-K chloride channels by fenamates. Mol Pharmacol 69:165–173

    PubMed  CAS  Google Scholar 

  • Liantonio A, Pusch M, Picollo A, Guida P, De Luca A, Pierno S, Fracchiolla G, Loiodice F, Tortorella P, Conte Camerino D (2004) Investigations of pharmacologic properties of the renal CLC-K1 chloride channel co-expressed with barttin by the use of 2-(p-chlorophenoxy)propionic acid derivatives and other structurally unrelated chloride channel blockers. J Am Soc Nephrol 15:13–20

    PubMed  CAS  Google Scholar 

  • Lin YW, Lin CW, Chen TY (1999) Elimination of the slow gating of ClC-0 chloride channel by a point mutation. J Gen Physiol 114:1–12

    PubMed  CAS  Google Scholar 

  • Lipecka J, Bali M, Thomas A, Fanen P, Edelman A, Fritsch J (2002) Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol 282:C805–C816

    PubMed  CAS  Google Scholar 

  • Liu W, Morimoto T, Kondo Y, Iinuma K, Uchida S, Imai M (2001) “Avian-type” renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Kidney Int 60:680–693

    PubMed  CAS  Google Scholar 

  • Lobet S, Dutzler R (2006) Ion-binding properties of the ClC chloride selectivity filter. EMBO J 25:24–33

    PubMed  CAS  Google Scholar 

  • Lorenz C, Pusch M, Jentsch TJ (1996) Heteromultimeric CLC chloride channels with novel properties. Proc Natl Acad Sci USA 93:13362–13366

    PubMed  CAS  Google Scholar 

  • Ludewig U, Jentsch TJ, Pusch M (1997a) Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0. J Physiol 498:691–702

    PubMed  CAS  Google Scholar 

  • Ludewig U, Pusch M, Jentsch TJ (1996) Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383:340–343

    PubMed  CAS  Google Scholar 

  • Ludewig U, Pusch M, Jentsch TJ (1997b) Independent gating of single pores in CLC-0 chloride channels. Biophys J 73:789–797

    PubMed  CAS  Google Scholar 

  • Ludwig M, Doroszewicz J, Seyberth HW, Bokenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dent's disease-causing mutations:implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237

    PubMed  Google Scholar 

  • Ludwig M, Waldegger S, Nuutinen M, Bokenkamp A, Reissinger A, Steckelbroeck S, Utsch B (2003) Four additional CLCN5 exons encode a widely expressed novel long CLC-5 isoform but fail to explain Dent's phenotype in patients without mutations in the short variant. Kidney Blood Press Res 26:176–184

    PubMed  CAS  Google Scholar 

  • Maack T, Park CH (1990) Endocytosis and lysosomal hydrolysis of proteins in proximal tubules. Methods Enzymol 191:340–354

    PubMed  CAS  Google Scholar 

  • Maduke M, Miller C, Mindell JA (2000) A decade of CLC chloride channels:structure, mechanism, and many unsettled questions. Annu Rev Biophys Biomol Struct 29:411–438

    PubMed  CAS  Google Scholar 

  • Maduke M, Pheasant DJ, Miller C (1999) High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 114:713–722

    PubMed  CAS  Google Scholar 

  • Maduke M, Williams C, Miller C (1998) Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains. Biochemistry 37:1315–1321

    PubMed  CAS  Google Scholar 

  • Malinowska DH, Kupert EY, Bahinski A, Sherry AM, Cuppoletti J (1995) Cloning, functional expression, and characterization of a PKA-activated gastric Cl channel. Am J Physiol Cell Physiol 268:C191–C200

    CAS  Google Scholar 

  • Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44

    PubMed  CAS  Google Scholar 

  • Maranda B, Brown D, Bourgoin S, Casanova JE, Vinay P, Ausiello DA, Marshansky V (2001) Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J Biol Chem 276:18540–18550

    PubMed  CAS  Google Scholar 

  • Marty A, Llano I (2005) Excitatory effects of GABA in established brain networks. Trends Neurosci 28:284–289

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Uchida S, Kondo Y, Miyazaki H, Ko SB, Hayama A, Morimoto T, Liu W, Arisawa M, Sasaki S, Marumo F (1999) Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 21:95–98

    PubMed  CAS  Google Scholar 

  • Mehrke G, Brinkmeier H, Jockusch H (1988) The myotonic mouse mutant ADR:electrophysiology of the muscle fiber. Muscle Nerve 11:440–446

    PubMed  CAS  Google Scholar 

  • Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Dev Biol 12:575–625

    CAS  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    PubMed  CAS  Google Scholar 

  • Meyer S, Dutzler R (2006) Crystal structure of the cytoplasmic domain of the chloride channel ClC-0. Structure 14:299–307

    PubMed  CAS  Google Scholar 

  • Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC (1995) Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 57:1325–1334

    PubMed  CAS  Google Scholar 

  • Middleton RE, Pheasant DJ, Miller C (1996) Homodimeric architecture of a ClC-type chloride ion channel. Nature 383:337–340

    PubMed  CAS  Google Scholar 

  • Miller C (1982) Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci 299:401–411

    PubMed  CAS  Google Scholar 

  • Miller C (2006) ClC chloride channels viewed through a transporter lens. Nature 440:484–489

    PubMed  CAS  Google Scholar 

  • Miller C, Richard EA (1990) The voltage-dependent chloride channel of Torpedo electroplax. Intimations of molecular structure from quirks of single-channel function. In:Chloride Channels and Carriers in Nerve, Muscle and Glial Cells. F.J. Alvarez-Leefmans and J.M. Russell, editors. pp. 383–405. Plenum, New York

    Google Scholar 

  • Miller C, White MM (1980) A voltage-dependent chloride conductance channel from Torpedo electroplax membrane. Ann NY Acad Sci 341:534–551

    PubMed  CAS  Google Scholar 

  • Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci USA 81:2772–2775

    PubMed  CAS  Google Scholar 

  • Miller MD, Schwarzenbacher R, von Delft F, Abdubek P, Ambing E, Biorac T, Brinen LS, Canaves JM, Cambell J, Chiu HJ, Dai X, Deacon AM, DiDonato M, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Hampton E, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, Levin I, McMullan D, McPhillips TM, Morse A, Moy K, Ouyang J, Page R, Quijano K, Robb A, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA (2004) Crystal structure of a tandem cystathionine-beta-synthase (CBS) domain protein (TM0935) from Thermotoga maritima at 1.87 Å resolution. Proteins 57:213–217

    PubMed  CAS  Google Scholar 

  • Mindell JA, Maduke M (2001) ClC chloride channels. Genome Biol 2:REVIEWS3003

    Google Scholar 

  • Mindell JA, Maduke M, Miller C, Grigorieff N (2001) Projection structure of a ClC-type chloride channel at 6.5 Å resolution. Nature 409:219–223

    PubMed  CAS  Google Scholar 

  • Misgeld U, Deisz RA, Dodt HU, Lux HD (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232:1413–1415

    PubMed  CAS  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    PubMed  CAS  Google Scholar 

  • Mo L, Wills NK (2004) ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC). J Membr Biol 202:21–37

    PubMed  CAS  Google Scholar 

  • Mo L, Xiong W, Qian T, Sun H, Wills NK (2004) Coexpression of complementary fragments of ClC-5 and restoration of chloride channel function in a Dent's disease mutation. Am J Physiol Cell Physiol 286:C79–C89

    PubMed  CAS  Google Scholar 

  • Mohammad-Panah R, Harrison R, Dhani S, Ackerley C, Huan LJ, Wang Y, Bear CE (2003) The chloride channel ClC-4 contributes to endosomal acidification and trafficking. J Biol Chem 278:29267–29277

    PubMed  CAS  Google Scholar 

  • Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS (2006) Anion channels including CLC-3 are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 7:7

    Google Scholar 

  • Moulin P, Igarashi T, Van der Smissen P, Cosyns JP, Verroust P, Thakker RV, Scheinman SJ, Courtoy PJ, Devuyst O (2003) Altered polarity and expression of H+-ATPase without ultrastructural changes in kidneys of Dent's disease patients. Kidney Int 63:1285–1295

    PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    PubMed  CAS  Google Scholar 

  • Murray CB, Chu S, Zeitlin PL (1996) Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol Lung Cell Mol Physiol 271:L829–L837

    CAS  Google Scholar 

  • Murray CB, Morales MM, Flotte TR, McGrath-Morrow SA, Guggino WB, Zeitlin PL (1995) CIC-2:a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 12:597–604

    PubMed  CAS  Google Scholar 

  • Nakatsu F, Ohno H (2003) Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct 28:419–429

    PubMed  CAS  Google Scholar 

  • Nascimento DS, Reis CU, Goldenberg RC, Ortiga-Carvalho TM, Pazos-Moura CC, Guggino SE, Guggino WB, Morales MM (2003) Estrogen modulates ClC-2 chloride channel gene expression in rat kidney. Pflügers Arch 446:593–599

    PubMed  CAS  Google Scholar 

  • Niemeyer MI, Cid LP, Zúñiga L, Catalán M, Sepúlveda FV (2003) A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J Physiol 553:873–879

    PubMed  CAS  Google Scholar 

  • Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepúlveda FV, Cid LP (2004) Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics 19:74–83

    PubMed  CAS  Google Scholar 

  • Nobles M, Higgins CF, Sardini A (2004) Extracellular acidification elicits a chloride current that shares characteristics with I Cl(swell). Am J Physiol Cell Physiol 287:C1426–C1435

    PubMed  CAS  Google Scholar 

  • Ogura T, Furukawa T, Toyozaki T, Yamada K, Zheng YJ, Katayama Y, Nakaya H, Inagaki N (2002) ClC-3B, a novel ClC-3 splicing variant that interacts with EBP50 and facilitates expression of CFTR-regulated ORCC. FASEB J 16:863–865

    PubMed  CAS  Google Scholar 

  • Palade PT, Barchi RL (1977) Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J Gen Physiol 69:325–342

    PubMed  CAS  Google Scholar 

  • Papponen H, Kaisto T, Myllyla VV, Myllyla R, Metsikko K (2005) Regulated sarcolemmal localization of the muscle-specific ClC-1 chloride channel. Exp Neurol 191:163–173

    PubMed  CAS  Google Scholar 

  • Peña-Münzenmayer G, Catalán M, Cornejo I, Figueroa CD, Melvin JE, Niemeyer MI, Cid LP, Sepúlveda FV (2005) Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci 118:4243–4252

    PubMed  Google Scholar 

  • Picollo A, Liantonio A, Didonna MP, Elia L, Camerino DC, Pusch M (2004) Molecular determinants of differential pore blocking of kidney CLC-K chloride channels. EMBO Rep 5:584–589

    PubMed  CAS  Google Scholar 

  • Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    PubMed  CAS  Google Scholar 

  • Piwon N, Günther W, Schwake M, Bösl MR, Jentsch TJ (2000) ClC-5 Cl -channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408:369–373

    PubMed  CAS  Google Scholar 

  • Plassart-Schiess E, Gervais A, Eymard B, Lagueny A, Pouget J, Warter JM, Fardeau M, Jentsch TJ, Fontaine B (1998) Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology 50:1176–1179

    PubMed  CAS  Google Scholar 

  • Ponting CP (1997) CBS domains in CIC chloride channels implicated in myotonia and nephrolithiasis (kidney stones). J Mol Med 75:160–163

    PubMed  CAS  Google Scholar 

  • Pusch M (1996) Knocking on channel's door. The permeating chloride ion acts as the gating charge in ClC-0. J Gen Physiol 108:233–236

    PubMed  CAS  Google Scholar 

  • Pusch M (2001) Chloride channelopathies. Pharmaceutical News 8:45–51

    CAS  Google Scholar 

  • Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423–434

    PubMed  CAS  Google Scholar 

  • Pusch M, Accardi A, Liantonio A, Ferrera L, De Luca A, Camerino DC, Conti F (2001) Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB). J Gen Physiol 118:45–62

    PubMed  CAS  Google Scholar 

  • Pusch M, Jordt SE, Stein V, Jentsch TJ (1999) Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol 515:341–353

    PubMed  CAS  Google Scholar 

  • Pusch M, Liantonio A, Bertorello L, Accardi A, De Luca A, Pierno S, Tortorella V, Camerino DC (2000) Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives. Mol Pharmacol 58:498–507

    PubMed  CAS  Google Scholar 

  • Pusch M, Ludewig U, Jentsch TJ (1997) Temperature dependence of fast and slow gating relaxations of ClC-0 chloride channels. J Gen Physiol 109:105–116

    PubMed  CAS  Google Scholar 

  • Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ (1995a) Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 373:527–531

    PubMed  CAS  Google Scholar 

  • Pusch M, Steinmeyer K, Jentsch TJ (1994) Low single channel conductance of the major skeletal muscle chloride channel, ClC-1. Biophys J 66:149–152

    PubMed  CAS  Google Scholar 

  • Pusch M, Steinmeyer K, Koch MC, Jentsch TJ (1995b) Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron 15:1455–1463

    PubMed  CAS  Google Scholar 

  • Pusch M, Zifarelli G, Murgia AR, Picollo A, Babini E (2006) Channel or transporter? The CLC saga continues. Exp Physiol 91:149–152.

    PubMed  CAS  Google Scholar 

  • Qualmann B, Kessels MM, Kelly RB (2000) Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150:F111–F116.

    PubMed  CAS  Google Scholar 

  • Ramjeesingh M, Li C, She YM, Bear CE (2006) Evaluation of the membrane domain of CLC-2. Biochem J 9:9

    Google Scholar 

  • Richard EA, Miller C (1990) Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247:1208–1210

    PubMed  CAS  Google Scholar 

  • Riordan JR (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67:701–718

    PubMed  CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene:cloning and characterization of complementary DNA. Science 245:1066–1073

    PubMed  CAS  Google Scholar 

  • Robinson NC, Huang P, Kaetzel MA, Lamb FS, Nelson DJ (2004) Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current. J Physiol 556:353–368

    PubMed  CAS  Google Scholar 

  • Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein A, Strauss O (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20:178–180.

    PubMed  CAS  Google Scholar 

  • Roux B, MacKinnon R (1999) The cavity and pore helices in the KcsA K+ channel:electrostatic stabilization of monovalent cations. Science 285:100–102

    PubMed  CAS  Google Scholar 

  • Rychkov G, Pusch M, Roberts M, Bretag A (2001) Interaction of hydrophobic anions with the rat skeletal muscle chloride channel ClC-1:effects on permeation and gating. J Physiol 530:379–393

    PubMed  CAS  Google Scholar 

  • Rychkov GY, Astill DS, Bennetts B, Hughes BP, Bretag AH, Roberts ML (1997) pH-dependent interactions of Cd2+ and a carboxylate blocker with the rat ClC-1 chloride channel and its R304E mutant in the Sf-9 insect cell line. J Physiol 501:355–362

    PubMed  CAS  Google Scholar 

  • Rychkov GY, Pusch M, Astill DS, Roberts ML, Jentsch TJ, Bretag AH (1996) Concentration and pH dependence of skeletal muscle chloride channel ClC- 1. J Physiol 497:423–435

    PubMed  CAS  Google Scholar 

  • Rychkov GY, Pusch M, Roberts ML, Jentsch TJ, Bretag AH (1998) Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol 111:653–665

    PubMed  CAS  Google Scholar 

  • Salas-Casas A, Ponce-Balderas A, Garcia-Perez RM, Cortes-Reynosa P, Gamba G, Orozco E, Rodriguez MA (2006) Identification and functional characterization of EhClC-A, an Entamoeba histolytica ClC chloride channel located at plasma membrane. Mol Microbiol 59:1249–1261

    PubMed  CAS  Google Scholar 

  • Salazar G, Love R, Styers ML, Werner E, Peden A, Rodriguez S, Gearing M, Wainer BH, Faundez V (2004) AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem 279:25430–25439

    PubMed  CAS  Google Scholar 

  • Sands JM, Bichet DG (2006) Nephrogenic diabetes insipidus. Ann Intern Med 144:186–194

    PubMed  CAS  Google Scholar 

  • Santos Ornellas D, Grozovsky R, Goldenberg RC, Carvalho DP, Fong P, Guggino WB, Morales M (2003) Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules. J Endocrinol 178:503–511

    Google Scholar 

  • Saviane C, Conti F, Pusch M (1999) The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol 113:457–468

    PubMed  CAS  Google Scholar 

  • Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Helix N, Stahlhut M, Ovejero MC, Johansen JV, Solberg H, Andersen TL, Hougaard D, Berryman M, Shiodt CB, Sørensen BH, Lichtenberg J, Christophersen P, Foged NT, Delaisse JM, Engsig MT, Karsdal MA (2004) The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res 19:1144–1153

    PubMed  CAS  Google Scholar 

  • Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427

    PubMed  CAS  Google Scholar 

  • Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314–1319

    PubMed  CAS  Google Scholar 

  • Schmidt-Rose T, Jentsch TJ (1997) Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1. J Biol Chem 272:20515–20521

    PubMed  CAS  Google Scholar 

  • Schwake M, Friedrich T, Jentsch TJ (2001) An internalization signal in ClC-5, an endosomal Cl channel mutated in Dent's disease. J Biol Chem 276:12049–12054

    PubMed  CAS  Google Scholar 

  • Schwappach B, Stobrawa S, Hechenberger M, Steinmeyer K, Jentsch TJ (1998) Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J Biol Chem 273:15110–15118

    PubMed  CAS  Google Scholar 

  • Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113:274–284

    PubMed  CAS  Google Scholar 

  • Silva IV, Cebotaru V, Wang H, Wang XT, Wang SS, Guo G, Devuyst O, Thakker RV, Guggino WB, Guggino SE (2003) The ClC-5 knockout mouse model of Dent's disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res 18:615–623

    PubMed  CAS  Google Scholar 

  • Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17:171–178

    PubMed  CAS  Google Scholar 

  • Sintchak MD, Fleming MA, Futer O, Raybuck SA, Chambers SP, Caron PR, Murcko MA, Wilson KP (1996) Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 85:921–930

    PubMed  Google Scholar 

  • Smith RL, Clayton GH, Wilcox CL, Escudero KW, Staley KJ (1995) Differential expression of an inwardly rectifying chloride conductance in rat brain neurons:a potential mechanism for cell-specific modulation of postsynaptic inhibition. J Neurosci 15:4057–4067

    PubMed  CAS  Google Scholar 

  • Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, Dupuis-Girod S, Ellis I, Etzioni A, Fasth A, Fisher A, Gerritsen B, Gulino V, Horwitz E, Klamroth V, Lanino E, Mirolo M, Musio A, Matthijs G, Nonomaya S, Notarangelo LD, Ochs HD, Superti Furga A, Valiaho J, van Hove JL, Vihinen M, Vujic D, Vezzoni P, Villa A (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773

    PubMed  CAS  Google Scholar 

  • Speake T, Kajita H, Smith CP, Brown PD (2002) Inward-rectifying anion channels are expressed in the epithelial cells of choroid plexus isolated from ClC-2 'knock-out' mice. J Physiol 539:385–390

    PubMed  CAS  Google Scholar 

  • Speirs HJ, Wang WY, Benjafield AV, Morris BJ (2005) No association with hypertension of CLCNKB and TNFRSF1B polymorphisms at a hypertension locus on chromosome 1p36. J Hypertens 23:1491–1496

    PubMed  CAS  Google Scholar 

  • Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ (1996) Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17:543–551

    PubMed  CAS  Google Scholar 

  • Steinmeyer K, Klocke R, Ortland C, Gronemeier M, Jockusch H, Gründer S, Jentsch TJ (1991a) Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308

    PubMed  CAS  Google Scholar 

  • Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ (1994) Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J 13:737–743

    PubMed  CAS  Google Scholar 

  • Steinmeyer K, Ortland C, Jentsch TJ (1991b) Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354:301–304

    PubMed  CAS  Google Scholar 

  • Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–31177

    PubMed  CAS  Google Scholar 

  • Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bösl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196

    PubMed  CAS  Google Scholar 

  • Strange K (2003) From genes to integrative physiology:ion channel and transporter biology in Caenorhabditis elegans. Physiol Rev 83:377–415

    PubMed  CAS  Google Scholar 

  • Suzuki T, Rai T, Hayama A, Sohara E, Suda S, Itoh T, Sasaki S, Uchida S (2006) Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers. J Cell Physiol 206:792–798

    PubMed  CAS  Google Scholar 

  • Tanford C (1983) Mechanism of free energy coupling in active transport. Ann Rev Biochem 52:379–409

    PubMed  CAS  Google Scholar 

  • Thiemann A, Gründer S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60

    PubMed  CAS  Google Scholar 

  • Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J, McCarty NA (2005) Inhibition of ClC-2 chloride channels by a peptide component or components of scorpion venom. J Membr Biol 208:65–76.

    PubMed  CAS  Google Scholar 

  • Thomsen J (1876) Tonische Krämpfe in willkürlich beweglichen Muskeln in Folge von ererbter psychischer Disposition. Arch Psychatrie Nerv 6:702–718

    Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    PubMed  CAS  Google Scholar 

  • Traverso S, Elia L, Pusch M (2003) Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic Inhibitor. J Gen Physiol 122:295–306

    PubMed  CAS  Google Scholar 

  • Traverso S, Zifarelli G, Aiello R, Pusch M (2006) Proton sensing of CLC-0 mutant E166D. J Gen Physiol 127:51–66

    PubMed  CAS  Google Scholar 

  • Tsui LC (1991) Probing the basic defect in cystic fibrosis. Curr Opin Genet Dev 1:4–10

    PubMed  CAS  Google Scholar 

  • Tyteca D, Van Der Smissen P, Mettlen M, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP, Courtoy PJ (2002) Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp Cell Res 281:86–100

    PubMed  CAS  Google Scholar 

  • Uchida S, Sasaki S (2005) Function of chloride channels in the kidney. Annu Rev Physiol 67:759–778

    PubMed  CAS  Google Scholar 

  • Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F (1993) Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 268:3821–3824

    PubMed  CAS  Google Scholar 

  • Uchida S, Sasaki S, Nitta K, Uchida K, Horita S, Nihei H, Marumo F (1995) Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1. J Clin Invest 95:104–113

    PubMed  CAS  Google Scholar 

  • van den Hove MF, Croizet-Berger K, Jouret F, Guggino SE, Guggino WB, Devuyst O, Courtoy PJ (2006) The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147:1287–1296

    PubMed  Google Scholar 

  • van Slegtenhorst MA, Bassi MT, Borsani G, Wapenaar MC, Ferrero GB, de Conciliis L, Rugarli EI, Grillo A, Franco B, Zoghbi HY, et al. (1994) A gene from the Xp22.3 region shares homology with voltage-gated chloride channels. Hum Mol Genet 3:547–552

    PubMed  Google Scholar 

  • Vandewalle A, Cluzeaud F, Bens M, Kieferle S, Steinmeyer K, Jentsch TJ (1997) Localization and induction by dehydration of ClC-K chloride channels in the rat kidney. Am J Physiol Renal Physiol 272:F678–F688

    CAS  Google Scholar 

  • Vandewalle A, Cluzeaud F, Peng KC, Bens M, Lüchow A, Günther W, Jentsch TJ (2001) Tissue distribution and subcellular localization of the ClC-5 chloride channel in rat intestinal cells. Am J Physiol Cell Physiol 280:C373–C381

    PubMed  CAS  Google Scholar 

  • Varela D, Niemeyer MI, Cid LP, Sepúlveda FV (2002) Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J Physiol 544:363–372

    PubMed  CAS  Google Scholar 

  • Vij N, Zeitlin PL (2006) Regulation of the ClC-2 lung epithelial chloride channel by glycosylation of SP1. Am J Respir Cell Mol Biol 34:754–759

    PubMed  CAS  Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    PubMed  CAS  Google Scholar 

  • Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties of ClC-K channels. Pflügers Arch 444:411–418

    PubMed  CAS  Google Scholar 

  • Waldegger S, Jentsch TJ (2000) Functional and structural analysis of ClC-K chloride channels involved in renal disease. J Biol Chem 275:24527–24533

    PubMed  CAS  Google Scholar 

  • Wang J, Xu H, Morishima S, Tanabe S, Jishage K, Uchida S, Sasaki S, Okada Y, Shimizu T (2006) Single-channel properties of volume-sensitive Cl channel in ClC-3-deficient cardiomyocytes. Jpn J Physiol 31:31

    Google Scholar 

  • Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    PubMed  CAS  Google Scholar 

  • Wang T, Weinman SA (2004) Involvement of chloride channels in hepatic copper metabolism:ClC-4 promotes copper incorporation into ceruloplasmin. Gastroenterology 126:1157–1166

    PubMed  CAS  Google Scholar 

  • Wang Y, Cai H, Cebotaru L, Hryciw DH, Weinman EJ, Donowitz M, Guggino SE, Guggino WB (2005) ClC-5:role in endocytosis in the proximal tubule. Am J Physiol Renal Physiol 289:F850–F862

    PubMed  CAS  Google Scholar 

  • Weinreich F, Jentsch TJ (2001) Pores formed by single subunits in mixed dimers of different CLC chloride channels. J Biol Chem 276:2347–2353

    PubMed  CAS  Google Scholar 

  • Wellhauser L, Kuo HH, Stratford FL, Ramjeesingh M, Huan LJ, Luong W, Li C, Deber CM, Bear CE (2006) Nucleotides bind to the carboxy terminus of ClC-5. Biochem J 11:11

    Google Scholar 

  • Weng TX, Godley BF, Jin GF, Mangini NJ, Kennedy BG, Yu AS, Wills NK (2002) Oxidant and antioxidant modulation of chloride channels expressed in human retinal pigment epithelium. Am J Physiol Cell Physiol 283:C839–C849

    PubMed  CAS  Google Scholar 

  • White MM, Miller C (1979) A voltage-gated anion channel from the electric organ of Torpedo californica. J Biol Chem 254:10161–10166

    PubMed  CAS  Google Scholar 

  • Wohlke A, Distl O, Drogemuller C (2006) Characterization of the canine CLCN3 gene and evaluation as candidate for late-onset NCL. BMC Genet 7:13

    PubMed  Google Scholar 

  • Wollnik B, Kubisch C, Steinmeyer K, Pusch M (1997) Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations. Hum Mol Genet 6:805–811

    PubMed  CAS  Google Scholar 

  • Wotring VE, Miller TS, Weiss DS (2003) Mutations at the GABA receptor selectivity filter:a possible role for effective charges. J Physiol 548:527–540

    PubMed  CAS  Google Scholar 

  • Wright EM, Diamond JM (1977) Anion selectivity in biological systems. Physiol Rev 57:109–156

    PubMed  CAS  Google Scholar 

  • Wrong OM, Norden AG, Feest TG (1994) Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493

    PubMed  CAS  Google Scholar 

  • Yin J, Kuang Z, Mahankali U, Beck TL (2004) Ion transit pathways and gating in ClC chloride channels. Proteins 57:414–421

    PubMed  Google Scholar 

  • Yoshikawa M, Uchida S, Ezaki J, Rai T, Hayama A, Kobayashi K, Kida Y, Noda M, Koike M, Uchiyama Y, Marumo F, Kominami E, Sasaki S (2002) CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Genes Cells 7:597–605

    PubMed  CAS  Google Scholar 

  • Yusef YR, Zúñiga L, Catalán M, Niemeyer MI, Cid LP, Sepúlveda FV (2006) Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain. J Physiol 9:9

    Google Scholar 

  • Zdebik AA, Cuffe JE, Bertog M, Korbmacher C, Jentsch TJ (2004) Additional disruption of the ClC-2 Cl- channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem 279:22276–22283

    PubMed  CAS  Google Scholar 

  • Zhang R, Evans G, Rotella FJ, Westbrook EM, Beno D, Huberman E, Joachimiak A, Collart FR (1999) Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase. Biochemistry 38:4691–4700

    PubMed  CAS  Google Scholar 

  • Zhang XD, Li Y, Yu WP, Chen TY (2006) Roles of K149, G352, and H401 in the channel functions of ClC-0:Testing the predictions from theoretical calculations. J Gen Physiol 127:435–447

    PubMed  CAS  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    PubMed  CAS  Google Scholar 

  • Zúñiga L, Niemeyer MI, Varela D, Catalán M, Cid LP, Sepúlveda FV (2004) The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J Physiol 555:671–682

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elena Babini for critical review of the manuscript. The financial support by Telethon Italy (grant GGP04018) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Zifarelli, G., Pusch, M. (2007). CLC chloride channels and transporters: a biophysical and physiological perspective. In: Amara, S. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_2006_0605

Download citation

Publish with us

Policies and ethics