Skip to main content

Biological effects of lysophospholipids

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 160))

Abstract

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent biologically active lipid mediators that exert a wide range of cellular effects through specific G protein-coupled receptors. To date, four LPA receptors and five S1P receptors have been identified. These receptors are expressed in a large number of tissues and cell types, allowing for a wide variety of cellular responses to lysophospholipid signaling, including cell adhesion, cell motility, cytoskeletal changes, proliferation, angiogenesis, process retraction, and cell survival. In addition, recent studies in mice show that specific lysophospholipid receptors are required for proper cardiovascular, immune, respiratory, and reproductive system development and function. Lysophospholipid receptors may also have specific roles in cancer and other diseases. This review will cover identification and expression of the lysophospholipid receptors, as well as receptor signaling properties and function. Additionally, phenotypes of mice deficient for specific lysophospholipid receptors will be discussed to demonstrate how these animals have furthered our understanding of the role lysophospholipids play in normal biology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102:3665–3667

    PubMed  CAS  Google Scholar 

  • Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M, Keohane CA, Mandala S, Spiegel S, Proia RL (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279:52487–492

    PubMed  CAS  Google Scholar 

  • An S, Bleu T, Huang W, Hallmark OG, Coughlin SR, Goetzl EJ (1997a) Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417:279–282

    PubMed  CAS  Google Scholar 

  • An S, Dickens MA, Bleu T, Hallmark OG, Goetzl EJ (1997b) Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem Biophys Res Commun 231:619–622

    PubMed  CAS  Google Scholar 

  • An S, Bleu T, Hallmark OG, Goetzl EJ (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem 273:7906–7910

    PubMed  CAS  Google Scholar 

  • An S, Bleu T, Zheng Y (1999) Transduction of intracellular calcium signals through G protein-mediated activation of phospholipase C by recombinant sphingosine 1-phosphate receptors. Mol Pharmacol 55:787–794

    PubMed  CAS  Google Scholar 

  • Ancellin N, Hla T (1999) Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem 274:18997–19002

    PubMed  CAS  Google Scholar 

  • Ancellin N, Colmont C, Su J, Li Q, Mittereder N, Chae SS, Stefansson S, Liau G, Hla T (2002) Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem 277:6667–6675

    PubMed  CAS  Google Scholar 

  • Aoki J, Taira A, Takanezawa Y, Kishi Y, Hama K, Kishimoto T, Mizuno K, Saku K, Taguchi R, Arai H (2002) Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J Biol Chem 277:48737–48744

    PubMed  CAS  Google Scholar 

  • Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem 274:27776–27785

    PubMed  CAS  Google Scholar 

  • Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432

    PubMed  CAS  Google Scholar 

  • Brauer AU, Savaskan NE, Kuhn H, Prehn S, Ninnemann O, Nitsch R (2003) A new phospholipid phosphatase, PRG-1, is involved in axon growth and regenerative sprouting. Nat Neurosci 6:572–578

    PubMed  Google Scholar 

  • Brinkmann V, Pinschewer D, Chiba K, Feng L (2000) FTY720: a novel transplantation drug that modulates lymphocyte traffic rather than activation. Trends Pharmacol Sci 21:49–52

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Pinschewer DD, Feng L, Chen S (2001) FTY720: altered lymphocyte traffic results in allograft protection. Transplantation 72:764–769

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, Foster CA, Zollinger M, Lynch KR (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–457

    PubMed  CAS  Google Scholar 

  • Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML (2003) Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 63:5446–453

    PubMed  CAS  Google Scholar 

  • Contos JJ, Chun J (2001) The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern. Gene 267:243–253

    PubMed  CAS  Google Scholar 

  • Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97:13384–13389

    PubMed  CAS  Google Scholar 

  • Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J (2002a) Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22:6921–6929

    PubMed  CAS  Google Scholar 

  • Contos JJ, Ye X, Sah VP, Chun J (2002b) Tandem genomic arrangement of a G protein (Gna15) and G protein-coupled receptor (s1p(4)/lp(C1)/Edg6) gene. FEBS Lett 531:99–102

    PubMed  CAS  Google Scholar 

  • Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB (2000) Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin Cancer Res 6:2482–2491

    PubMed  CAS  Google Scholar 

  • Ferry G, Tellier E, Try A, Gres S, Naime I, Simon MF, Rodriguez M, Boucher J, Tack I, Gesta S, Chomarat P, Dieu M, Raes M, Galizzi JP, Valet P, Boutin JA, Saulnier-Blache JS (2003) Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 278:18162–18169

    PubMed  CAS  Google Scholar 

  • Frenkian M, Segond N, Pidoux E, Cohen R, Jullienne A (2001) Indomethacin, a COX inhibitor, enhances 15-PGDH and decreases human tumoral C cells proliferation. Prostaglandins 65:11–20

    PubMed  CAS  Google Scholar 

  • Fukushima N, Kimura Y, Chun J (1998) A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci USA 95:6151–6156

    PubMed  CAS  Google Scholar 

  • Fukushima N, Weiner JA, Chun J (2000) Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 228:6–18

    PubMed  CAS  Google Scholar 

  • Glickman M, Malek RL, Kwitek-Black AE, Jacob HJ, Lee NH (1999) Molecular cloning, tissue-specific expression, and chromosomal localization of a novel nerve growth factor-regulated G-protein-coupled receptor, nrg-1. Mol Cell Neurosci 14:141–152

    PubMed  CAS  Google Scholar 

  • Goding JW, Terkeltaub R, Maurice M, Deterre P, Sali A, Belli SI (1998) Ecto-phosphodiesterase/pyrophosphatase of lymphocytes and non-lymphoid cells: structure and function of the PC-1 family. Immunol Rev 161:11–26

    PubMed  CAS  Google Scholar 

  • Goetzl EJ, Wang W, McGiffert C, Huang MC, Graler MH (2004) Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system. J Cell Biochem 92:1104–1114

    PubMed  CAS  Google Scholar 

  • Gon Y, Wood MR, Kiosses WB, Jo E, Sanna MG, Chun J, Rosen H (2005) S1P3 receptor-induced reorganization of epithelial tight junctions compromises lung barrier integrity and is potentiated by TNF. Proc Natl Acad Sci USA 102:9270–5

    PubMed  CAS  Google Scholar 

  • Graeler M, Goetzl EJ (2002) Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J 16:1874–1878

    PubMed  CAS  Google Scholar 

  • Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18:551–553

    PubMed  CAS  Google Scholar 

  • Graler MH, Bernhardt G, Lipp M (1998) EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics 53:164–169

    PubMed  CAS  Google Scholar 

  • Graler MH, Grosse R, Kusch A, Kremmer E, Gudermann T, Lipp M (2003) The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J Cell Biochem 89:507–519

    PubMed  CAS  Google Scholar 

  • Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R, Ohta H, Yamori T, Watanabe M, Chun J, Arai H (2004) Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J Biol Chem 279:17634–17639

    PubMed  CAS  Google Scholar 

  • Hecht JH, Weiner JA, Post SR, Chun J (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135:1071–1083

    PubMed  CAS  Google Scholar 

  • Herr DR, Fyrst H, Creason MB, Phan VH, Saba JD, Harris GL (2004) Characterization of the Drosophila sphingosine kinases and requirement for Sk2 in normal reproductive function. J Biol Chem 279:12685–12694

    PubMed  CAS  Google Scholar 

  • Hla T, Maciag T (1990) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265:9308–9313

    PubMed  CAS  Google Scholar 

  • Im DS, Heise CE, Ancellin N, O'Dowd BF, Shei GJ, Heavens RP, Rigby MR, Hla T, Mandala S, McAllister G, George SR, Lynch KR (2000a) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem 275:14281–14286

    PubMed  CAS  Google Scholar 

  • Im DS, Heise CE, Harding MA, George SR, O'Dowd BF, Theodorescu D, Lynch KR (2000b) Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol 57:753–759

    PubMed  CAS  Google Scholar 

  • Im DS, Clemens J, Macdonald TL, Lynch KR (2001) Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P5 (Edg-8): structure-activity relationship of sphingosine1-phosphate receptors. Biochemistry 40:14053–14060

    PubMed  CAS  Google Scholar 

  • Ishii I, Contos JJ, Fukushima N, Chun J (2000) Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 58:895–902

    PubMed  CAS  Google Scholar 

  • Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ, Kingsbury MA, Zhang G, Brown JH, Chun J (2001) Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 276:33697–33704

    PubMed  CAS  Google Scholar 

  • Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ, Kingsbury MA, Yang AH, Zhang G, Brown JH, Chun J (2002) Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem 277:25152–25159

    PubMed  CAS  Google Scholar 

  • Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, Walsh FS, Pangalos MN, Arimura N, Kaibuchi K, Zalc B, Lubetzki C (2005) Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25:1459–1469

    PubMed  CAS  Google Scholar 

  • Jasinska R, Zhang QX, Pilquil C, Singh I, Xu J, Dewald J, Dillon DA, Berthiaume LG, Carman GM, Waggoner DW, Brindley DN (1999) Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J 340:677–686

    PubMed  CAS  Google Scholar 

  • Jin Y, Knudsen E, Wang L, Bryceson Y, Damaj B, Gessani S, Maghazachi AA (2003) Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 101:4909–4915

    PubMed  CAS  Google Scholar 

  • Kai M, Wada I, Imai S, Sakane F, Kanoh H (1996) Identification and cDNA cloning of 35-kDa phosphatidic acid phosphatase (type 2) bound to plasma membranes. Polymerase chain reaction amplification of mouse H2O2-inducible hic53 clone yielded the cDNA encoding phosphatidic acid phosphatase. J Biol Chem 271:18931–18938

    PubMed  CAS  Google Scholar 

  • Kai M, Wada I, Imai S, Sakane F, Kanoh H (1997) Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem 272:24572–24578

    PubMed  CAS  Google Scholar 

  • Kennedy TG (1977) Evidence for a role for prosaglandins in the initiation of blastocyst implantation in the rat. Biol Reprod 16:286–291

    PubMed  CAS  Google Scholar 

  • Kihara A, Ikeda M, Kariya Y, Lee EY, Lee YM, Igarashi Y (2003) Sphingosine-1-phosphate lyase is involved in the differentiation of F9 embryonal carcinoma cells to primitive endoderm. J Biol Chem 278:14578–14585

    PubMed  CAS  Google Scholar 

  • Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J (2003) Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6:1292–1299

    PubMed  CAS  Google Scholar 

  • Kinoshita K, Satoh K, Ishihara O, Tsutsumi O, Nakayama M, Kashimura F, Mizuno M (1985) Involvement of prostaglandins in implantation in the pregnant mouse. Adv Prostaglandin Thromboxane Leukot Res 15:605–607

    PubMed  CAS  Google Scholar 

  • Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273:23722–23728

    PubMed  CAS  Google Scholar 

  • Kohno T, Matsuyuki H, Inagaki Y, Igarashi Y (2003) Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells. Genes Cells 8:685–697

    PubMed  CAS  Google Scholar 

  • Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373

    PubMed  CAS  Google Scholar 

  • Lee MJ, Evans M, Hla T (1996) The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem 271:11272–11279

    PubMed  CAS  Google Scholar 

  • Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    PubMed  CAS  Google Scholar 

  • Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales-Ruiz M, Sessa WC, Alessi DR, Hla T (2001) Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 8:693–704

    PubMed  CAS  Google Scholar 

  • Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, Schafers M (2004) High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 110:3355–3359

    PubMed  CAS  Google Scholar 

  • Li G, Foote C, Alexander S, Alexander H (2001) Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. Development 128:3473–3483

    PubMed  CAS  Google Scholar 

  • Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, Dey SK (1997) Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91:197–208

    PubMed  CAS  Google Scholar 

  • Liu CH, Hla T (1997) The mouse gene for the inducible G-protein-coupled receptor edg-1. Genomics 43:15–24

    PubMed  CAS  Google Scholar 

  • Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S (2000a) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    PubMed  CAS  Google Scholar 

  • Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL (2000b) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961

    PubMed  CAS  Google Scholar 

  • MacLennan AJ, Browe CS, Gaskin AA, Lado DC, Shaw G (1994) Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol Cell Neurosci 5:201–209

    PubMed  CAS  Google Scholar 

  • MacLennan AJ, Marks L, Gaskin AA, Lee N (1997) Embryonic expression pattern of H218, a G-protein coupled receptor homolog, suggests roles in early mammalian nervous system development. Neuroscience 79:217–224

    PubMed  CAS  Google Scholar 

  • MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, Anderson KJ, Roper SN, Lee N (2001) An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14:203–209

    PubMed  CAS  Google Scholar 

  • Malek RL, Toman RE, Edsall LC, Wong S, Chiu J, Letterle CA, Van Brocklyn JR, Milstien S, Spiegel S, Lee NH (2001) Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. J Biol Chem 276:5692–5699

    PubMed  CAS  Google Scholar 

  • Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, Bergstrom J, Kurtz MB, Spiegel S (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc Natl Acad Sci USA 97:7859–7864

    PubMed  CAS  Google Scholar 

  • Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ, Card D, Keohane C, Rosenbach M, Hale J, Lynch CL, Rupprecht K, Parsons W, Rosen H (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    PubMed  CAS  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    PubMed  CAS  Google Scholar 

  • McDermott MI, Sigal YJ, Sciorra VA, Morris AJ (2004) Is PRG-1 a new lipid phosphatase? Nat Neurosci 7:789; author reply 789–790

    PubMed  CAS  Google Scholar 

  • McGiffert C, Contos JJ, Friedman B, Chun J (2002) Embryonic brain expression analysis of lysophospholipid receptor genes suggests roles for s1p(1) in neurogenesis and s1p(1–3) in angiogenesis. FEBS Lett 531:103–108

    PubMed  CAS  Google Scholar 

  • Mendel J, Heinecke K, Fyrst H, Saba JD (2003) Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem 278:22341–22349

    PubMed  CAS  Google Scholar 

  • Moolenaar WH (1995) Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270:12949–12952

    PubMed  CAS  Google Scholar 

  • Murata J, Lee HY, Clair T, Krutzsch HC, Arestad AA, Sobel ME, Liotta LA, Stracke ML (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J Biol Chem 269:30479–3084

    PubMed  CAS  Google Scholar 

  • Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, Stracke ML (2001) Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res 61:6938–6944

    PubMed  CAS  Google Scholar 

  • Niedernberg A, Scherer CR, Busch AE, Kostenis E (2002) Comparative analysis of human and rat S1P(5) (edg8): differential expression profiles and sensitivities to antagonists. Biochem Pharmacol 64:1243–1250

    PubMed  CAS  Google Scholar 

  • Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581

    PubMed  CAS  Google Scholar 

  • Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278:25600–25606

    PubMed  CAS  Google Scholar 

  • Ogawa C, Kihara A, Gokoh M, Igarashi Y (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem 278:1268–1272

    PubMed  CAS  Google Scholar 

  • Okamoto H, Takuwa N, Gonda K, Okazaki H, Chang K, Yatomi Y, Shigematsu H, Takuwa Y (1998) EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J Biol Chem 273:27104–27110

    PubMed  CAS  Google Scholar 

  • Okazaki H, Ishizaka N, Sakurai T, Kurokawa K, Goto K, Kumada M, Takuwa Y (1993) Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun 190:1104–1109

    PubMed  CAS  Google Scholar 

  • Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147:545–558

    PubMed  CAS  Google Scholar 

  • Pages C, Daviaud D, An S, Krief S, Lafontan M, Valet P, Saulnier-Blache JS (2001a) Endothelial differentiation gene-2 receptor is involved in lysophosphatidic acid-dependent control of 3T3F442A preadipocyte proliferation and spreading. J Biol Chem 276:11599–11605

    PubMed  CAS  Google Scholar 

  • Pages C, Simon MF, Valet P, Saulnier-Blache JS (2001b) Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat 64:1–10

    PubMed  CAS  Google Scholar 

  • Paik JH, Chae S, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 276:11830–11837

    PubMed  CAS  Google Scholar 

  • Reese J, Brown N, Paria BC, Morrow J, Dey SK (1999) COX-2 compensation in the uterus of COX-1 deficient mice during the pre-implantation period. Mol Cell Endocrinol 150:23–31

    PubMed  CAS  Google Scholar 

  • Roberts R, Sciorra VA, Morris AJ (1998) Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem 273:22059–22067

    PubMed  CAS  Google Scholar 

  • Roberts RZ, Morris AJ (2000) Role of phosphatidic acid phosphatase 2a in uptake of extracellular lipid phosphate mediators. Biochim Biophys Acta 1487:33–49

    PubMed  CAS  Google Scholar 

  • Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    PubMed  CAS  Google Scholar 

  • Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS, Webb B, Lefebvre S, Chun J, Gray N, Rosen H (2004) Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 279:13839–13848

    PubMed  CAS  Google Scholar 

  • Sano T, Baker D, Virag T, Wada A, Yatomi Y, Kobayashi T, Igarashi Y, Tigyi G (2002) Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem 277:21197–21206

    PubMed  CAS  Google Scholar 

  • Smyth SS, Sciorra VA, Sigal YJ, Pamuklar Z, Wang Z, Xu Y, Prestwich GD, Morris AJ (2003) Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity. J Biol Chem 278:43214–43223

    PubMed  CAS  Google Scholar 

  • Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J, Bonventre JV, Dey SK (2002) Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development 129:2879–2889

    PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    PubMed  CAS  Google Scholar 

  • Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267:2524–2529

    PubMed  CAS  Google Scholar 

  • Stracke ML, Clair T, Liotta LA (1997) Autotaxin, tumor motility-stimulating exophosphodiesterase. Adv Enzyme Regul 37:135–144

    PubMed  CAS  Google Scholar 

  • Symowicz J, Adley BP, Woo MM, Auersperg N, Hudson LG, Stack MS (2005) Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells. Cancer Res 65:2234–2242

    PubMed  CAS  Google Scholar 

  • Tanyi JL, Morris AJ, Wolf JK, Fang X, Hasegawa Y, Lapushin R, Auersperg N, Sigal YJ, Newman RA, Felix EA, Atkinson EN, Mills GB (2003) The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res 63:1073–1082

    PubMed  CAS  Google Scholar 

  • Terai K, Soga T, Takahashi M, Kamohara M, Ohno K, Yatsugi S, Okada M, Yamaguchi T (2003) Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience 116:1053–1062

    PubMed  CAS  Google Scholar 

  • Tolle M, Levkau B, Keul P, Brinkmann V, Giebing G, Schonfelder G, Schafers M, von Wnuck Lipinski K, Jankowski J, Jankowski V, Chun J, Zidek W, Van der Giet M (2005) Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96:913–920

    PubMed  Google Scholar 

  • Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233

    PubMed  CAS  Google Scholar 

  • Valet P, Pages C, Jeanneton O, Daviaud D, Barbe P, Record M, Saulnier-Blache JS, Lafontan M (1998) Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J Clin Invest 101:1431–1438

    PubMed  CAS  Google Scholar 

  • Van Brocklyn JR, Tu Z, Edsall LC, Schmidt RR, Spiegel S (1999) Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. J Biol Chem 274:4626–4632

    PubMed  Google Scholar 

  • Van Brocklyn JR, Graler MH, Bernhardt G, Hobson JP, Lipp M, Spiegel S (2000) Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95:2624–2629

    PubMed  Google Scholar 

  • Van Veldhoven PP, Mannaerts GP (1994) Sphinganine 1-phosphate metabolism in cultured skin fibroblasts: evidence for the existence of a sphingosine phosphatase. Biochem J 299:597–601

    PubMed  Google Scholar 

  • Wang W, Graeler MH, Goetzl EJ (2004) Physiological sphingosine 1-phosphate requirement for optimal activity of mouse CD4+ regulatory T Cells. FASEB J 18:1043–1045

    PubMed  CAS  Google Scholar 

  • Weiner JA, Chun J (1999) Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Natl Acad Sci USA 96:5233–5238

    PubMed  CAS  Google Scholar 

  • Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398:587–598

    PubMed  CAS  Google Scholar 

  • Weiner JA, Fukushima N, Contos JJ, Scherer SS, Chun J (2001) Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J Neurosci 21:7069–7078

    PubMed  CAS  Google Scholar 

  • Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem 274:27351–27358

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Tokuda M, Hatase O, Brenner S (1996) Molecular cloning of the novel human G protein-coupled receptor (GPCR) gene mapped on chromosome 9. Biochem Biophys Res Commun 227:608–614

    PubMed  CAS  Google Scholar 

  • Yamazaki Y, Kon J, Sato K, Tomura H, Sato M, Yoneya T, Okazaki H, Okajima F, Ohta H (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun 268:583–589

    PubMed  CAS  Google Scholar 

  • Yang L, Yatomi Y, Miura Y, Satoh K, Ozaki Y (1999) Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 107:282–293

    PubMed  CAS  Google Scholar 

  • Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, Satoh K, Kume S, Tigyi G, Igarashi Y, Ozaki Y (2000) Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96:3431–3438

    PubMed  CAS  Google Scholar 

  • Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y (2001) Sphingosine 1-phosphate: synthesis and release. Prostaglandins 64:107–122

    PubMed  CAS  Google Scholar 

  • Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435:104–108

    PubMed  CAS  Google Scholar 

  • Yu N, Lariosa-Willingham KD, Lin FF, Webb M, Rao TS (2004) Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendrocytes. Glia 45:17–27

    PubMed  Google Scholar 

  • Zhang G, Contos JJ, Weiner JA, Fukushima N, Chun J (1999) Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. Gene 227:89–99

    PubMed  CAS  Google Scholar 

  • Zhang QX, Pilquil CS, Dewald J, Berthiaume LG, Brindley DN (2000) Identification of structurally important domains of lipid phosphate phosphatase-1: implications for its sites of action. Biochem J 345:181–184

    PubMed  CAS  Google Scholar 

  • Zondag GC, Postma FR, Etten IV, Verlaan I, Moolenaar WH (1998) Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J 330:605–609

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brigitte Anliker and Christine Paczkowski for critical reading of the manuscript. This work was supported by NIH grants MH51699, MH01723, and NS048478 to J.C. from the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chun .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Rivera, R., Chun, J. (2006). Biological effects of lysophospholipids. In: Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_0507

Download citation

Publish with us

Policies and ethics