Skip to main content

Sugarcane-Biorefinery

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 166))

Abstract

Concepts such as biorefinery and green chemistry focus on the usage of biomass, as with the oil value chain. However, it can cause less negative impact on the environment. A biorefinery based on sugarcane (Saccharum spp.) as feedstock is an example, because it can integrate into the same physical space, of processes for obtaining biofuels (ethanol), chemicals (from sugars or ethanol), electricity, and heat.

The use of sugarcane as feedstock for biorefineries is dictated by its potential to supply sugars, ethanol, natural polymers or macromolecules, organic matter, and other compounds and materials. By means of conversion processes (chemical, biochemical, and thermochemical), sugarcane biomass can be transformed into high-value bioproducts to replace petrochemicals, as a bioeconomy model.

This is a preview of subscription content, log in via an institution.

References

  1. Vaz S Jr (2014) Perspectives for the Brazilian residual biomass in renewable chemistry. Pure Appl Chem 86:833–842. doi:10.1515/pac-2013-0917

    Article  CAS  Google Scholar 

  2. Centro de Gestão e Estudos Estratégicos (2010) Química verde no Brasil: 2010–2030. CGEE, Brasília, 438 pp

    Google Scholar 

  3. United States Department of Energy (2004) Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas. US-DOE, Springfield, p 76

    Google Scholar 

  4. Brazilian Sugarcane Industry Association (2014) Unicadata. Available on: http://www.unicadata.com.br/. Accessed 14 Dec 2015

  5. Food and Agriculture Organization of the United Nations (2013) Faostat. Available on: http://faostat3.fao.org/home/E. Accessed 14 Dec 2015

  6. Dinardo-Miranda LL, Vasconcelos ACM, Landell MGA (eds) (2008) Cana-de-açúcar. Instituto Agronômico, Campinas, 882 pp

    Google Scholar 

  7. Vaz SJ (2014) A renewable chemistry linked to the Brazilian biofuel production. Chem Biol Technol Agric 1:13. doi:10.1186/s40538-014-0013-1

    Article  CAS  Google Scholar 

  8. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27. doi:10.1016/j.renene.2011.06.045

    Article  CAS  Google Scholar 

  9. Da Silva MAS, Griebeler NP, Borges LC (2007) Uso de vinhaça e impactos nas propriedades do solo e lençol freático. Revista Brasileira de Engenharia Agrícola e Ambiental 11:108-114. doi:10.1590/S1415-43662007000100014

    Article  Google Scholar 

  10. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s Top 10 revisited. Green Chem 12:539–554. doi:10.1039/B922014C

    Article  CAS  Google Scholar 

  11. Bomgardner MM (2014) Biobased polymers. Chem Eng News 92:10–14

    Google Scholar 

  12. BioAmber (2015) Products. Available on: http://www.bio-amber.com/bioamber/en/products#succinic_acid. Accessed 14 Dec 2015

  13. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30

    Google Scholar 

  14. Kamm B, Gruber PR, Kamm M (2006) Biorefineries: industrial processes and products: status quo and future directions. Wiley-VCH, Weinheim, 406 pp

    Google Scholar 

  15. United States Department of Energy (2007) Top value added chemicals from biomass: results of screening for potential candidates from biorefinery lignin. US-DOE, Springfield, p 79

    Google Scholar 

  16. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. doi:10.1021/cr900354u

    Article  CAS  PubMed  Google Scholar 

  17. Collinson SR, Thielemans W (2010) New materials focusing on starch, cellulose and lignin. Coord Chem Rev 254:1854–1870. doi:10.1016/j.ccr.2010.04.007

    Article  CAS  Google Scholar 

  18. Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107. doi:10.1016/j.biombioe.2009.03.001

    Article  Google Scholar 

  19. Cutright TJ (2002) Biotechnology principles. In: Ghassemi A (ed) Handbook of pollution and waste minimization. Marcel Dekker, New York, pp 189–232

    Google Scholar 

  20. Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17:1510–1521. doi:10.1021/ef030031q

    Article  CAS  Google Scholar 

  21. Akay G, Jordan CA (2011) Gasification of fuel cane bagasse in a downdraft gasifier: influence of lignocellulosic composition and fuel particle size on syngas composition and yield. Energy Fuels 25:2274–2283. doi:10.1021/ef101494w

    Article  CAS  Google Scholar 

  22. Gökalp I, Lebas E (2004) Alternative fuels for industrial gas turbines (AFTUR). Appl Therm Eng 24:1655–1663. doi:10.1016/j.applthermaleng.2003.10.035

    Article  CAS  Google Scholar 

  23. Vijayendran BJ (2010) Bio products from bio refineries – trends, challenges and opportunities. J Bus Chem 7:109–115

    Google Scholar 

  24. Biotechnology Industry Organization (2010) Biobased chemicals and products: a new driver for green jobs. Available on: http://www.bio.org/articles/biobased-chemicals-and-products-new-driver-green-jobs. Accessed 14 Dec 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvio Vaz Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vaz, S. (2017). Sugarcane-Biorefinery. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_70

Download citation

Publish with us

Policies and ethics