Skip to main content

Genome-Scale Modeling of Thermophilic Microorganisms

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 160))

Abstract

Thermophilic microorganisms are of increasing interest for many industries as their enzymes and metabolisms are highly efficient at elevated temperatures. However, their metabolic processes are often largely different from their mesophilic counterparts. These differences can lead to metabolic engineering strategies that are doomed to fail. Genome-scale metabolic modeling is an effective and highly utilized way to investigate cellular phenotypes and to test metabolic engineering strategies. In this review we chronicle a number of thermophilic organisms that have recently been studied with genome-scale models. The microorganisms spread across archaea and bacteria domains, and their study gives insights that can be applied in a broader context than just the species they describe. We end with a perspective on the future development and applications of genome-scale models of thermophilic organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brock TD (1985) Life at high temperatures. Science 230:132–138

    Article  CAS  Google Scholar 

  2. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98(1):289–297

    CAS  Google Scholar 

  3. Bult CJ, White O, Olsen GJ, Zhou L (1996) Complete genome sequence of the methanogenic archaeon. Methanococcus jannaschii. Science 273:1058

    Article  CAS  Google Scholar 

  4. Brock TD (1967) Life at high temperatures. Science 158:1012–1019

    Article  CAS  Google Scholar 

  5. Robb F, Antranikian G, Grogan D, Driessen A (2007) Thermophiles: biology and technology at high temperatures. CRC Press

    Google Scholar 

  6. Caldwell D, Brannan D, Kieft T (1983) Thermothrix thiopara: selection and adaptation of a filamentous sulfur-oxidizing bacterium colonizing hot spring tufa at pH 7.0 and 74 C. Ecol Bull 38:129–134

    Google Scholar 

  7. Zeikus J (1979) Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol 1:243–252

    Article  CAS  Google Scholar 

  8. Shelef G, Kimchie S, Grynberg H (1980) High-rate thermophilic anaerobic digestion of agricultural wastes. In Biotechnol Bioeng Symp (United States). Environmental and Water Resources Engineering Dept., Technion, Haifa, Israel

    Google Scholar 

  9. Gajalakshmi S, Abbasi S (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400

    Article  CAS  Google Scholar 

  10. Cecchi F, Pavan P, Alvarez JM, Bassetti A, Cozzolino C (1991) Anaerobic digestion of municipal solid waste: thermophilic vs. mesophilic performance at high solids. Waste Manag Res 9:305–315

    Article  CAS  Google Scholar 

  11. Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D (2016) Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 48:227–235

    Article  CAS  Google Scholar 

  12. Deveci H, Akcil A, Alp I (2004) Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy 73:293–303

    Article  CAS  Google Scholar 

  13. Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H (1997) Microbial recovery of metals from solids. FEMS Microbiol Rev 20:605–617

    Article  CAS  Google Scholar 

  14. Barrett J (1990) Metal extraction by bacterial oxidation of minerals. Horwood

    Google Scholar 

  15. Rossi G (1990) Biohydrometallurgy. McGraw-Hill

    Google Scholar 

  16. Bobadilla-Fazzini RA, Cortés MP, Maass A, Parada P (2014) Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion. AMB Express 4:1

    Article  CAS  Google Scholar 

  17. Zhang L, Wu J, Wang Y, Wan L, Mao F, Zhang W, Chen X, Zhou H (2014) Influence of bioaugmentation with Ferroplasma thermophilum on chalcopyrite bioleaching and microbial community structure. Hydrometallurgy 146:15–23

    Article  CAS  Google Scholar 

  18. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  Google Scholar 

  19. Varma A, Palsson B (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  CAS  Google Scholar 

  20. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980

    Article  CAS  Google Scholar 

  21. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  Google Scholar 

  22. King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522

    Article  Google Scholar 

  23. Roberts S, Gowen C, Brooks JP, Fong S (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4:31

    Article  Google Scholar 

  24. Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4:1

    Article  Google Scholar 

  25. Milton H, Reddy VJ, Tamang D, Västermark A (2014) The transporter classification database. Nucleic Acids Res 42:251–258

    Article  Google Scholar 

  26. Gowen CM, Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5:759–767

    Article  CAS  Google Scholar 

  27. Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT (2015) Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng 32:207–219

    Article  CAS  Google Scholar 

  28. Zhou J, Olson DG, Argyros DA, Deng Y, van Gulik WM, van Dijken JP, Lynd LR (2013) Atypical glycolysis in Clostridium thermocellum. Appl Environ Microbiol 79:3000–3008

    Article  CAS  Google Scholar 

  29. Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S et al (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193:2906–2907

    Article  CAS  Google Scholar 

  30. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR et al (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599

    Article  CAS  Google Scholar 

  31. Thompson RA, Dahal S, Garcia S, Nookaew I, Trinh CT (2016) Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnology Biofuels 9:194

    Article  Google Scholar 

  32. Ozaki S, Fujimitsu K, Kurumizaka H, Katayama T (2006) The DnaA homolog of the hyperthermophilic eubacterium Thermotoga maritima forms an open complex with a minimal 149‐bp origin region in an ATP‐dependent manner. Genes Cells 11:425–438

    Article  CAS  Google Scholar 

  33. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  34. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  Google Scholar 

  35. Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325:1544–1549

    Article  CAS  Google Scholar 

  36. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    Article  CAS  Google Scholar 

  37. Nogales J, Gudmundsson S, Thiele I (2012) An in silico re-design of the metabolism in Thermotoga maritima for increased biohydrogen production. Int J Hydrogen Energy 37:12205–12218

    Google Scholar 

  38. Lee N-R, Lakshmanan M, Aggarwal S, Song J-W, Karimi IA, Lee D-Y, Park J-B (2014) Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27. Microb Cell Fact 13:1

    Article  Google Scholar 

  39. Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    CAS  Google Scholar 

  40. Nordström KM, Laakso SV (1992) Effect of growth temperature on fatty acid composition of ten thermus strains. Appl Environ Microbiol 58:1656–1660

    Google Scholar 

  41. Pask-Hughes RA, Shaw N (1982) Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J Bacteriol 149:54–58

    CAS  Google Scholar 

  42. Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:367–372

    Article  CAS  Google Scholar 

  43. Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D (2012) Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 7:e43401

    Article  CAS  Google Scholar 

  44. Teufel R, Kung JW, Kockelkorn D, Alber BE, Fuchs G (2009) 3-Hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J Bacteriol 191:4572–4581

    Article  CAS  Google Scholar 

  45. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  CAS  Google Scholar 

  46. Quester S, Schomburg D (2011) EnzymeDetector: an integrated enzyme function prediction tool and database. BMC Bioinformatics 12:376

    Article  Google Scholar 

  47. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  48. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471

    Article  CAS  Google Scholar 

  49. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M, Thiele J, Schomburg D (2010) BRENDA, the enzyme information system in 2011. Nucleic Acids Res gkq1089

    Google Scholar 

  50. Wilson DB (2004) Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4:72–82

    Article  CAS  Google Scholar 

  51. Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13:570–577

    Article  CAS  Google Scholar 

  52. Vanee N, Brooks JP, Spicer V, Shamshurin D, Krokhin O, Wilkins JA, Deng Y, Fong SS (2014) Proteomics-based metabolic modeling and characterization of the cellulolytic bacterium Thermobifida fusca. BMC Syst Biol 8:1

    Article  Google Scholar 

  53. Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol 7:869–882

    Article  CAS  Google Scholar 

  54. Mock J, Wang S, Huang H, Kahnt J, Thauer RK (2014) Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 196:3303–3314

    Article  Google Scholar 

  55. Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821

    Article  CAS  Google Scholar 

  56. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    CAS  Google Scholar 

  57. Currie DH, Raman B, Gowen CM, Tschaplinski TJ, Land ML, Brown SD, Covalla SF, Klingeman DM, Yang ZK, Engle NL (2015) Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Syst Biol 9:1

    Article  CAS  Google Scholar 

  58. Chelliah V, Juty N, Ajmera I, Ali R, Dumousseau M, Glont M, Hucka M, Jalowicki G, Keating S, Knight-Schrijver V et al (2015) BioModels: ten-year anniversary. Nucleic Acids Res 43:D542–D548

    Article  Google Scholar 

  59. Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B et al (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:D689–D691

    Article  Google Scholar 

  60. Anderson I, Göker M, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng J-F, Tapia R, Han C, Goodwin L et al (2011) Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1A(T)). Stand Genomic Sci 4:381–392

    Article  CAS  Google Scholar 

  61. Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157

    Article  CAS  Google Scholar 

  62. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD et al (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  CAS  Google Scholar 

  63. Tsoka S, Simon D, Ouzounis CA (2004) Automated metabolic reconstruction for Methanococcus jannaschii. Archaea 1:223–229

    Article  CAS  Google Scholar 

  64. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A et al (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101, 145–152

    Article  CAS  Google Scholar 

  65. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M et al (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  CAS  Google Scholar 

  66. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett RA, Klenk H-P (2007) The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. Archaea (Vancouver, BC) 2:127–135

    Google Scholar 

  67. Ravin NV, Mardanov AV, Beletsky AV, Kublanov IV, Kolganova TV, Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA, Skryabin KG (2009) Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis. J Bacteriol 191:2371–2379

    Article  CAS  Google Scholar 

  68. Wirth R, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R et al (2011) Complete genome sequence of Desulfurococcus mucosus type strain (O7/1). Stand Genomic Sci 4:173–182

    Article  CAS  Google Scholar 

  69. Anderson I, Wirth R, Lucas S, Copeland A, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Davenport K, Detter JC et al (2011) Complete genome sequence of Staphylothermus hellenicus P8. Stand Genomic Sci 5:12–20

    Article  CAS  Google Scholar 

  70. Mavromatis K, Sikorski J, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng J-F, Lucas S, Chen F, Nolan M et al. (2010) Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IA). Stand Genomic Sci 2:9–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Dahal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dahal, S., Poudel, S., Thompson, R.A. (2016). Genome-Scale Modeling of Thermophilic Microorganisms. In: Nookaew, I. (eds) Network Biology. Advances in Biochemical Engineering/Biotechnology, vol 160. Springer, Cham. https://doi.org/10.1007/10_2016_45

Download citation

Publish with us

Policies and ethics