Skip to main content

Advanced Approaches to Model Xenobiotic Metabolism in Bacterial Genotoxicology In Vitro

  • Chapter
  • First Online:
In vitro Environmental Toxicology - Concepts, Application and Assessment

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 157))

Abstract

During the past 30 years there has been considerable progress in the development of bacterial test systems for use in genotoxicity testing by the stable introduction of expression vectors (cDNAs) coding for xenobiotic-metabolizing enzymes into bacterial cells. The development not only provides insights into the mechanisms of bioactivation of xenobiotic compounds but also evaluates the roles of enzymes involved in metabolic activation or inactivation in chemical carcinogenesis. This review describes recent advances in bacterial genotoxicity assays and their future prospects, with a focus on the development and application of genetically engineering bacterial cells to incorporate some of the enzymatic activities involved in the bio-activation process of xenobiotics. Various genes have been introduced into bacterial umu tester strains encoding enzymes for genotoxic bioactivation, including bacterial nitroreductase and O-acetyltransferase, human cytochrome P450 monooxygenases, rat glutathione S-transferases, and human N-acetyltransferases and sulfotransferases. Their application has provided new tools for genotoxicity assays and for studying the role of biotransformation in chemical carcinogenesis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fieser LF (1938) Carcinogenic activity, structure and chemical reactivity of polynuclear hydrocarbons. Am J Cancer 34:37–127

    Article  CAS  Google Scholar 

  2. Miller EC, Miller JA (1947) The presence and significance of bound amino azodyes in the liver of rats fed p-dimethylaminoazobenzene. Cancer Res 71:468–480

    Google Scholar 

  3. Malling HV (1971) Dimethylnitrosamine: formation of mutagenic compounds by interaction with mouse liver microsomes. Mutat Res 13:425–429

    Article  CAS  Google Scholar 

  4. Ames BN, Durston WE, Yamazaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70:2281–2285

    Article  CAS  Google Scholar 

  5. McCann J, Springarn NE, Kobori J, Ames BN (1975) Detection of carcinogens as mutagens: bacterial tester strains with R-factor plasmid. Proc Natl Acad Sci U S A 72:979–983

    Article  CAS  Google Scholar 

  6. Zeiger E (1998) Identification of rodent carcinogens and noncarcinogens using genetic toxicity tests: premises, promises, and performance. Regul Toxicol Pharmacol 28:85–95

    Article  CAS  Google Scholar 

  7. Rinkus SJ, Legator MS (1979) Chemical characterization of 465 known or suspected carcinogens and their correlation with mutagenic activity in the Salmonella typhimurium system. Cancer Res 39:3289–3318

    CAS  Google Scholar 

  8. Rinkus SJ, Legator MS (1981) Salmonella revised: a reply to Ames and McCann. Cancer Res 41:4196–4203

    CAS  Google Scholar 

  9. Ames BN, McCann J (1981) Validation of the Salmonella test: a reply to Rinkus and Legator. Cancer Res 41:4192–4196

    CAS  Google Scholar 

  10. Venitt S, Crofton-Sleigh C, Forrester R (1984) Bacterial mutation assays using reverse mutation. In: Venitt S, Parry JM (eds) Mutagenicity testing, a practical approach. IRL Press, Oxford, pp 45–98

    Google Scholar 

  11. Dyrby T, Ingvardsen P (1983) Sensitivity of different E. coli and Salmonella strains in mutagenicity testing calculated on the basis of selected literature. Mutat Res 123:47–60

    Article  CAS  Google Scholar 

  12. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damaged in Escherichia coli. Microbiol Rev 48:60–93

    CAS  Google Scholar 

  13. Elesperu RK, White RJ (1983) Biochemical prophage induction assay: a rapid test for antitumor agents that interact with DNA. Cancer Res 43:2819–2830

    Google Scholar 

  14. Quillardet P, Huisman O, D’ari R, Hofnung M (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K12 to measure genotoxicity. Proc Natl Acad Sci U S A 79:5971–5975

    Article  CAS  Google Scholar 

  15. Quillardet P, Hofnung M (1993) The SOS chromotest: a review. Mutat Res 297:235–279

    Article  CAS  Google Scholar 

  16. Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229

    Article  CAS  Google Scholar 

  17. Kato T, Shinoura Y (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet 156:121–131

    CAS  Google Scholar 

  18. Shinagawa H, Kato T, Ise T, Makino K, Nakata A (1983) Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Gene 23:167–174

    Article  CAS  Google Scholar 

  19. Reuven NB, Arad G, Maor-Shoshani A, Livneh Z (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB and is specialized for translesion replication. J Biol Chem 274:31763–31766

    Article  CAS  Google Scholar 

  20. Tang M, Shen X, Frank EG, O’Donnell M, Woodgate R, Goodman MF (1999) UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A 96:8919–8924

    Article  CAS  Google Scholar 

  21. Nakamura S, Oda Y, Shimada T, Oki I, Sugimoto K (1987) SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002: examination with 151 chemicals. Mutat Res 192:239–246

    Article  CAS  Google Scholar 

  22. McDaniels AE, Reyes AL, Wymer LJ, Rankin CC, Stelma GN Jr (1990) Comparison of the Salmonella (Ames) test, umu tests, and the SOS chromotests for detecting genotoxins. Environ Mol Mutagen 16:204–215

    Article  CAS  Google Scholar 

  23. Reifferscheid G, Heil J (1996) Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. Mutat Res 369:129–145

    Article  CAS  Google Scholar 

  24. Tennant RW, Margolin BH, Shelby MD, Zeiger E, Haseman JK, Spalding J, Caspary W, Rensnick M, Stasiewicz S, Anderson B, Minor R (1987) Prediction of chemical carcinogenicity in rodent from in vitro genetic toxicity assays. Science 236:933–941

    Article  CAS  Google Scholar 

  25. Zeiger E (1987) Carcinogenicity of mutagens: predictive capability of the Salmonella mutagenesis assay for rodent carcinogenicity. Cancer Res 47:1287–1296

    CAS  Google Scholar 

  26. Yasunaga K, Kiyonari A, Oikawa T, Abe N, Yoshikawa K (2004) Evaluation of the Salmonella umu test with 83 NTP chemicals. Environ Mol Mutagen 44:329–345

    Article  CAS  Google Scholar 

  27. Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T (2006) Electrochemical mutagens screening using microbial chip. Biosens Bioelectron 21:1202–1209

    Article  CAS  Google Scholar 

  28. Buchinger S, Grill R, Morosow V, Yoav HB, Diamand YS, Biran A, Pedahzur R, Belkin S, Reifferscheid G (2010) Evaluation of chrone-amperometric signal detection for the analysis of genotoxicity by a whole cell biosensor. Anal Chim Acta 659:122–128

    Article  CAS  Google Scholar 

  29. Kuramitz H, Sazawa K, Nanayama Y, Hata N, Taguchi S, Sugawara K, Fukushima M (2012) Electrochemical genotoxicity assay based on a SOS/umu test using hydrodynamic voltammetry in a droplet. Sensors 12:17414–17432

    Article  CAS  Google Scholar 

  30. Brinkmann C, Eisentraeger A (2008) Completely automated short-term genotoxicity testing for the assessment of chemicals and characterization of contaminated soils and waste waters. Environ Sci Pollut Res 15:211–217

    Article  CAS  Google Scholar 

  31. Ptitsyn LR, Horneck G, Komava O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxins screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol 63:4377–4387

    CAS  Google Scholar 

  32. Verschaeve L, Van Gompel J, Thilemans L, Regniers Vanparys P, van der Lelie D (1999) VITOTOX bacterial genotoxicity and toxicity test for the rapid screening of chemicals. Environ Mol Mutagen 33:240–248

    Article  CAS  Google Scholar 

  33. Norman A, Hansen LH, Sorensen SJ (2006) A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell bacterial sensors for the detection of genotoxins in complex environments. Mutat Res 63:164–172

    Article  CAS  Google Scholar 

  34. Østrgaard TG, Hansen LH, Binderup ML, Norman A, Sørensen SJ (2007) The cda GenoTox assay: a new and sensitive method for detection of environmental genotoxins, including nitroarenes and aromatic amines. Mutat Res 63:77–84

    Article  CAS  Google Scholar 

  35. ISO (2000) Water quality-determination of the genotoxicity of water and wastewater using the umu-test. ISO 13829. ISO, Geneva

    Google Scholar 

  36. Giuliani F, Koller T, Wurgler FE, Widmer RM (1996) Detection of genotoxic activity in native hospital waste water by the umuC test. Mutat Res 368:49–57

    Article  CAS  Google Scholar 

  37. Oda Y, Funasaka K, Kitano M, Nakama A, Yoshikura T (2004) Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ Mol Mutagen 43:10–19

    Article  CAS  Google Scholar 

  38. Rao SS, Quinn BA, Burnison BK, Hayes MA, Metcalfe CD (1995) Assessment of the genotoxic potential of pulp mill effluent using bacterial, fish and mammalian assays. Chemosphere 31:3567–3574

    Article  Google Scholar 

  39. Reifferscheid G, Heil J, Oda Y, Zahn RK (1991) A microplate version of the SOS/umu-test for rapid detection of genotoxins and genotoxic potentials of environmental samples. Mutat Res 253:215–222

    Article  CAS  Google Scholar 

  40. Castillo M, Alonso MC, Riu J, Reinke M, Kloter G, Dizer H, Fischer B, Hansen PD, Barcelo D (2001) Identification of cytotoxic compound in European wastewaters during a field experiment. Anal Chim Acta 426:265–277

    Article  CAS  Google Scholar 

  41. Dizer H, Wittekindt E, Fischer B, Hansen PD (2002) The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers. Chemosphere 46:225–233

    Article  CAS  Google Scholar 

  42. Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital waste water. Environ Toxicol Chem 17:377–382

    Article  CAS  Google Scholar 

  43. Hartmann A, Golet EM, Gartiser S, Alder AC, Koller T, Widmer RM (1999) Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital waste waters. Arch Environ Contam Toxicol 36:115–119

    Article  CAS  Google Scholar 

  44. Gartiser S, Hafner C, Hercher C, Konenberger-Schafer K, Paschke A (2010) Whole effluent assessment of industrial wastewater for determination of bat compliance. Part 1: paper manufacturing industry. Environ Sci Pollut Res 17:856–865

    Article  CAS  Google Scholar 

  45. Zegura B, Heath E, Cernosa A, Filipic M (2009) Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75:1453–1460

    Article  CAS  Google Scholar 

  46. Plaza G, Nalecz-Jawecki G, Ulfig K, Brigmon RL (2005) Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil. Ecotoxicol Environ Saf 62:415–420

    Article  CAS  Google Scholar 

  47. Gustavsson L, Engwall M (2006) Genotoxic activity of nitroarene-contaminated industrial sludge following large-scale treatment in aerated and non-aerated sacs. Sci Total Environ 367:694–703

    Article  CAS  Google Scholar 

  48. Macova M, Toze S, Hodgers L, Mueller JF, Bartkow M, Escher BI (2011) Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling drinking water generation. Water Res 45:4238–4247

    Article  CAS  Google Scholar 

  49. Shen L, Wu JY, Lin GF, Shen JH, Westendorf J, Huehnerfuss H (2003) The mutagenic potentials of tap water samples in Shanghai. Chemosphere 52:1642–1646

    Article  CAS  Google Scholar 

  50. Li J, Cui Q, Wang Z (2008) Assessing the potential risk of oil-field produced waters using a battery of bioassays/biomarkers. Bull Environ Contam Toxicol 80:492–496

    Article  CAS  Google Scholar 

  51. Fang YX, Ying GG, Zhao JL, Clen F, Liu S, Zhang LJ, Yang B (2012) Assessment of hormonal activities and genotoxicity of industrial effuents using in vitro bioassays combined with chemical analysis. Environ Toxicol Chem 31:1273–1282

    Article  CAS  Google Scholar 

  52. Yan Y, Jain W, Li N, Ma M, Wang D, Wang Z, Rao K (2014) Assessing of genotoxicity of 16 centralized source-waters in China by means of the SOS/umu assay and the micronucleus test: initial identification of the potential genotoxicants by use of a GC/MS method and the QSAR Toolbox 3.0. Mutat Res 763:36–43

    Article  CAS  Google Scholar 

  53. Wu GY, Li Y, Hu HY, Sun YX, Zhao FY (2010) Reduced effect of bromide on the genotoxicity of secondary effluent of a municipal wastewater treatment plant during chlorination. Environ Sci Technol 44:4924–4929

    Article  CAS  Google Scholar 

  54. Wu GY, Li Y, Hu HY, Ding YN, Huang H, Zhao FY (2012) Removal of genotoxicity in chlorinated secondary effluent of a domestic wastewater treatment plant during dechlorination. Environ Sci Pollut Res Int 19:1–7

    Article  CAS  Google Scholar 

  55. Tang F, Hu HY, Wu QY, Sun YX, Shi XL, Huang JJ (2013) Effects of chemical agent injection on genotoxicity of wastewater in a microfiltration-reverse osmosis membrane process for wastewater reuse. J Hazard Mater 15:231–237

    Article  CAS  Google Scholar 

  56. Cao N, Yang M, Zhang Y, Hu J, Ike M, Hirotsuji J, Matsui H, Inoue D, Sei K (2009) Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci Total Environ 407:1588–1597

    Article  CAS  Google Scholar 

  57. Li L, Wei D, Du Y (2013) Transformation of cefazolin during chlorination process: products mechanism and genotoxicity assessment. J Hazard Mater 262:48–54

    Article  CAS  Google Scholar 

  58. Tian Z, Oda Y, Zhang Y, Yang M, Li H (2015) Use of a new enzyme extraction system to improve the sensitivity of SOS/umu test and application to environmental samples. Bull Environ Contam Toxicol 94:370–375

    Article  CAS  Google Scholar 

  59. Xiao R, Wang Z, Wang C, Yu G (2006) Soil screening for identifying ecological risk stressors using a battery of in vitro cell assays. Chemosphere 64:71–78

    Article  CAS  Google Scholar 

  60. Xiao R, Wang Z, Wang C, Yu G, Zhu Y (2006) Genotoxic risk identification of soil contamination at a major industrialized city in northeast China by a combination of in vitro and in vivo bioassays. Environ Sci Technol 40:6170–6175

    Article  CAS  Google Scholar 

  61. Yu G, Xiao R, Wang D, Zhou J, Wang Z (2008) Assessing the ecological risk of soil irrigated with wastewater using in vitro cell bioassays. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1618–1627

    Article  CAS  Google Scholar 

  62. Lei B, Kang J, Wang X, Liu Q, Yu Z, Zeng X, Fu J (2015) The toxicity of sediments from Taihu Lake evaluated by several in vitro bioassays. Environ Sci Pollut Res Int 22:3419–3430

    Article  CAS  Google Scholar 

  63. Whong WZ, Wen YF, Stewart J, Ong TM (1986) Validation of the SOS/umu test with mutagenic complex mixtures. Mutat Res 175:139–144

    Article  CAS  Google Scholar 

  64. Ong TM, Stewart J, Wen YF, Whong WZ (1987) Application of SOS umu-test for the detection of genotoxic volatile chemicals and air pollutants. Environ Mutagen 9:171–176

    Article  CAS  Google Scholar 

  65. Yoshida J, Kosaka H, Tomioka K, Kumagai S (2006) Genotoxic risks to nurses from contamination of the work environment with antineoplastic drugs in Japan. J Occup Health 48:517–522

    Article  Google Scholar 

  66. Allinson M, Kageyama S, Nakajima D, Kamata R, Shiraishi F, Goto S, Salzman SA, Allison G (2012) A pilot survey of 39 Victorian WWTP effluents using a high speed luminescent umu test in conjunction with a novel GC-MS-database technique for automatic identification of micropollutants. Water Sci Technol 66:768–774

    Article  CAS  Google Scholar 

  67. Shimada T, Nakamura S (1987) Cytochrome P-450 mediated activation of procarcinogens and promutagens to DNA-damaging products by measuring expression of umu gene in Salmonella typhimurium TA1535/pSK1002. Biochem Pharmacol 36:1979–1987

    Article  CAS  Google Scholar 

  68. Shimada T, Nakamura S, Imaoka S, Funae Y (1987) Genotoxic and mutagenic activation of aflatoxin B1 by constitutive forms of cytochrome P-450 in rat liver microsomes. Toxicol Appl Pharmacol 91:13–21

    Article  CAS  Google Scholar 

  69. Shimada T, Okuda Y (1988) Metabolic activation of environmental carcinogens and mutagens by human liver microsomes; role of cytochrome P-450 homologous to a 3-methylcholanthrene-inducible isozyme in rat liver. Biochem Pharmacol 37:459–465

    Article  CAS  Google Scholar 

  70. Shimada T, Guengerich FP (1989) Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 86:462–465

    Article  CAS  Google Scholar 

  71. Shimada T, Iwasaki M, Martin MV, Guengerich FP (1989) Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK1002. Cancer Res 49:3218–3228

    CAS  Google Scholar 

  72. Shimada T, Martin MV, Pruess-Schwartz D, Marnett LJ, Guengerich FP (1989) Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res 49:6304–6312

    CAS  Google Scholar 

  73. Brian WR, Sari MA, Iwasaki M, Shimada T, Kaminsky L, Guengerich FP (1990) Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae. Biochemistry 29:11280–11292

    Article  CAS  Google Scholar 

  74. Guengerich FP, Shimada T (1991) Activation of amino-α-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P450 enzymes in rat and human liver microsomes. Cancer Res 51:5284–5291

    Google Scholar 

  75. Yamazaki H, Degawa M, Funae Y, Imaoka S, Inui Y, Guengerich FP, Shimada T (1991) Roles of different cytochrome P450 enzymes in bioactivation of the potent hepatocarcinogen 3-methoxy-4-aminoazobenzene by rat and human liver microsomes. Carcinogenesis 12:133–139

    Article  CAS  Google Scholar 

  76. Yamazaki H, Hatanaka N, Kizu R, Hayakawa K, Shimada N, Guengerich FP, Nakajima M, Yokoi T (2000) Bioactivation of diesel exhaust particles extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochrome P450s 1A1, 1A2, and 1B1. Mutat Res 472:129–138

    Article  CAS  Google Scholar 

  77. Takemoto K, Yamazaki H, Nakajima M, Yokoi T (2002) Genotoxic activation of benzophenone and its two metabolites by human cytochrome P450s in SOS/umu assay. Mutat Res 19:199–204

    Article  Google Scholar 

  78. Shimada T, Yamazaki H, Shimura H, Tanaka R, Guengerich FP (1990) Metabolic deactivation of furylfuramide by cytochrome P450 in human and rat liver microsomes. Carcinogenesis 11:103–110

    Article  CAS  Google Scholar 

  79. Shimada T, Guengerich FP (1990) Inactivation of 1,3-,1,6-, and 1,8-dinitropyrene by cytochrome P-450 enzymes in human and rat liver microsomes. Cancer Res 50:2036–2043

    CAS  Google Scholar 

  80. Ueng Y-F, Shyu C-C, Liu T-Y, Oda Y, Lin Y-L, Liao J-F, Chen C-F (2001) Protective effects of baicalein and wogonin against benzo[a]pyrene-and aflatoxin B1-induced genotoxicities. Biochem Pharmacol 62:1653–1660

    Article  CAS  Google Scholar 

  81. Rosenkranz HS, Mermelstein R (1983) Mutagenicity and genotoxicity of nitroarenes: all nitro-containing chemicals were not created equal. Mutat Res 114:217–267

    Article  CAS  Google Scholar 

  82. Tokiwa H, Ohnishi Y (1986) Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit Rev Toxicol 17:23–60

    Article  CAS  Google Scholar 

  83. Novak M, Kahley MJ, Eiger E, Helmick JS, Peters HE (1993) Reactivity and selectivity of nitrenium ions derived from ester derivatives of carcinogenic N-(4-biphenyllyl)hydroxylamine and the corresponding hydroxamic acid. J Am Chem Soc 115:9453–9460

    Article  CAS  Google Scholar 

  84. Watanabe M, Nohmi T, Ishidate M Jr (1987) New tester strains of Salmonella typhimurium highly sensitive to mutagenic nitroarenes. Biochem Biophys Res Commun 147:974–979

    Article  CAS  Google Scholar 

  85. Watanabe M, Ishidate M Jr, Nohmi T (1989) A sensitive method for detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat Res 216:211–220

    Article  CAS  Google Scholar 

  86. Oda Y, Shimada T, Watanabe M, Nohmi T (1992) A sensitive system (umu test) for the detection of mutagenic nitroarenes in Salmonella typhimurium strain possessing elevated nitroreductase. Water Sci Technol 25:279–284

    CAS  Google Scholar 

  87. Oda Y, Shimada T, Watanabe M, Ishidate M Jr, Nohmi T (1992) A sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM1011 having a high nitroreductase activity. Mutat Res 272:91–99

    Article  CAS  Google Scholar 

  88. Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1993) Highly sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM3009 having high O-acetyltransferase and nitroreductase activities. Environ Mol Mutagen 21:357–364

    Article  CAS  Google Scholar 

  89. Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1995) Development of high sensitive umu test system: rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high O-acetyltransferase activity. Mutat Res 334:145–156

    Article  CAS  Google Scholar 

  90. Yamazaki H, Oda Y, Shimada T (1992) Use of a newly developed tester strain Salmonella typhimurium NM2009 for the study of metabolic activation of carcinogenic aromatic amines by rat liver microsomal cytochrome P-450 enzymes. Mutat Res 272:183–192

    Article  CAS  Google Scholar 

  91. Ozturk K, Durusoy M (1999) The detection and comparison of the genotoxic effects of some nitroaromatic compounds by the umu and SOS chromotest systems. Toxicol Lett 108:63–68

    Article  CAS  Google Scholar 

  92. Durusoy M, Kambur S (2003) The application of the umu test system for screening mutagenicity of surface water. Turk J Biochem 28:3–7

    Google Scholar 

  93. Funasaka K, Kitano M, Nakama A, Yoshikura T, Oda Y (2003) Detection of genotoxicity of atmospheric particles using a high-throughput microplate umu-test system. Acta Biochim Pol 50:291–296

    CAS  Google Scholar 

  94. Ma F, Yuan G, Meng L, Oda Y, Hu J (2012) Contributions of flumequine and nitroarenes to the genotoxicity of river and ground waters. Chemosphere 88:476–483

    Article  CAS  Google Scholar 

  95. Ono Y, Somiya I, Kawaguchi T (1996) Genotoxicity of substances in the nightsoil and its biologically treated water. Water Res 30:569–577

    Article  CAS  Google Scholar 

  96. Ono Y, Somiya I, Kawaguchi T, Mohri S (1996) Evaluation of toxic substances in effluents from a wastewater treatment plant. Desalination 106:255–261

    Article  CAS  Google Scholar 

  97. Ohe T, Nukaya H (1996) Genotoxic activity of 1-nitropyrene in water from the Yodo river, Japan. Sci Total Environ 181:7–12

    Article  CAS  Google Scholar 

  98. Ohe T (1997) Quantification of mutagenic/carcinogenic heterocyclic amines, MeIQx, Trp-P-1, Trp-P-2, and PhIP, contributing highly to genotoxicity of river water. Mutat Res 393:73–79

    Article  CAS  Google Scholar 

  99. Shimada T, Gillam EM, Sandhu P, Guo Z, Tukey RH, Guengerich FP (1994) Activation of procarcinogens by human cytochrome P450 enzymes expressed in Escherichia coli. Simplified bacterial systems for genotoxicity assays. Carcinogenesis 15:2523–2529

    Article  CAS  Google Scholar 

  100. Yamazaki H, Oda Y, Funae Y, Imaoka S, Inui Y, Guengerich FP, Shimada T (1992) Participation of rat liver cytochrome P450 2E1 in the activation of N-nitrosodimethlamine and N-nitrosodiethylamine to products genotoxic in an acetyltransferase-overexpressing Salmonella typhimurium strain (NM2009). Carcinogenesis 13:979–985

    Article  CAS  Google Scholar 

  101. Yamazaki H, Inui Y, Yun C-H, Guengerich FP, Shimada T (1992) Cytochrome P4502E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis 13:1789–1794

    Article  CAS  Google Scholar 

  102. Josephy PD, Lord HL, Snieckus VA (1994) Dimethylnitrosamine genotoxicity: does N-acetyltransferase activity play a role? Carcinogenesis 15:479–482

    Article  CAS  Google Scholar 

  103. Yamazaki H, Shimada T (1992) Activation of 6-aminochrysene to genotoxic products by different forms of rat liver cytochrome P450 in an O-acetyltransferase overexpressing Salmonella typhimurium strain (NM2009). Biochem Pharmacol 44:913–920

    Article  CAS  Google Scholar 

  104. Yamazaki H, Mimura M, Oda Y, Inui Y, Shiraga T, Iwasaki K, Guengerich FP, Shimada T (1993) Roles of different form of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes. Carcinogenesis 14:1271–1278

    Article  CAS  Google Scholar 

  105. Yamazaki H, Mimura M, Oda Y, Gonzalez FJ, El-Bayoumy K, Chae Y-H, Guengerich FP, Shimada T (1994) Activation of trans-1,2-dihydro-1,2-dihydroxy-6-aminochrysene to genotoxic metabolites by rat and human cytochromes P450. Carcinogenesis 15:465–470

    Article  CAS  Google Scholar 

  106. Yamazaki H, Inui Y, Wrighton SA, Guengerich FP, Shimada T (1995) Procarcinogen activation by cytochrome P450 3A4 and 3A5 expressed in Escherichia coli and by human liver microsomes. Carcinogenesis 16:2167–2170

    Article  CAS  Google Scholar 

  107. Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 56:2979–2984

    CAS  Google Scholar 

  108. Shimada T (1999/2000) Human cytochrome P450 1B1 and chemical carcinogenesis. Rev Toxicol 3:139–166. IOS Press

    Google Scholar 

  109. Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EMJ, Inoue K (1999) Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20:1607–1613

    Article  CAS  Google Scholar 

  110. Shimada T, Oda Y, Gillam EMJ, Guengerich FP, Inoue K (2001) Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P4501A1and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab Dispos 29:1178–1182

    Google Scholar 

  111. Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, Guengerich FP (2013) Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochrome 2A13 and 2A6. Chem Res Toxicol 26:529–537

    Article  CAS  Google Scholar 

  112. Hatanaka N, Yamazaki H, Oda Y, Guengerich FP, Nakajima M, Yokoi T (2001) Metabolic activation of carcinogenic 1-nitropyrene by human cytochrome P450 1B1 in Salmonella typhimurium strain expressing an O-acetyltransferase in SOS/umu assay. Mutat Res 497:223–233

    Article  CAS  Google Scholar 

  113. Shimada T, El-Bayoumy K, Upadhyaya P, Sutter TR, Guengerich FP (1997) Inhibition of human cytochrome P450-catalyzed oxidations of xenobiotics and procarcinogens by synthetic organoselenium compounds. Cancer Res 57:4757–4764

    CAS  Google Scholar 

  114. Shimada T, Guengerich FP (2006) Inhibition of human cytochrome P4501A1-, 1A2-, 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem Res Toxicol 19:288–294

    Article  CAS  Google Scholar 

  115. Wu Z-L, Sohl CD, Shimada T, Guengerich FP (2006) Recombinant enzymes overexpressed in bacteria show broad catalytic specificity of human cytochrome P450 2W1 and limited activity of human cytochrome P450 2S1. Mol Pharmacol 69:2007–2014

    Article  CAS  Google Scholar 

  116. Yueh M-F, Nguyen N, Famourzadeh M, Strassburg PS, Oda Y, Guengerich FP, Tukey RH (2001) The contribution of UDP-glucuronosyltransferase 1A9 on CYP1A2-mediated genotoxicity by aromatic and heterocyclic amines. Carcinogenesis 22:943–950

    Article  CAS  Google Scholar 

  117. Davies R, Crespi CL, Rudo K, Turner TR, Langenbach R (1989) Development of a human cell line by selection and drug-metabolizing gene transfection with increased capacity to activate promutagens. Carcinogenesis 10:885–891

    Article  CAS  Google Scholar 

  118. Yanagawa Y, Sawada M, Deguchi T, Gonzalez F, Kamataki T (1994) Stable expression of human CYP1A2 and N-acetyltransferasesin Chinese hamster CHL cells: mutagenic activation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Cancer Res 54:3422–3427

    CAS  Google Scholar 

  119. Josephy PD, DeBruin LS, Lord HL, Oak JN, Evans DH, Guo Z, Dong MS, Guengerich FP (1995) Bioactivation of aromatic amines by recombinant human cytochrome P4501A2 expressed in Ames tester strain bacteria: a substrate for activation by mammalian tissue preparations. Cancer Res 55:799–802

    CAS  Google Scholar 

  120. Kranendonk M, Mesquita P, Laires A, Vermeulen NP, Rueff J (1998) Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens. Mutagenesis 13:263–269

    Article  CAS  Google Scholar 

  121. Suzuki A, Kushida H, Iwata H, Watanabe M, Nohmi T, Fujita K-I, Gonzalez FJ, Kamataki T (1998) Establishment of a Salmonella tester strain highly sensitive to mutagenic heterocyclic amines. Cancer Res 58:1833–1838

    CAS  Google Scholar 

  122. Cooper MT, Porter TD (2000) Mutagenicity of nitrosamines in methyltransferase-deficient strains of Salmonella typhimurium coexpressing human cytochrome P450 2E1 and reductase. Mutat Res 454:45–52

    Article  CAS  Google Scholar 

  123. Kushida H, Fujita K, Suzuki A, Yamada M, Nohmi T, Kamataki T (2000) Development of a Salmonella tester strain sensitive to promutagenic N-nitrosamines: expression of recombinant CYP2A6 and human NADPH-cytochrome P450 reductase in S. typhimurium YG7108. Mutat Res 471:135–143

    Article  CAS  Google Scholar 

  124. Kushida H, Fujita K, Suzuki A, Yamada M, Endo T, Nohmi T, Kamataki T (2000) Metabolic activation of N-alkylnitrosamines in genetically engineered Salmonella typhimurium expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis 21:1227–1232

    Article  CAS  Google Scholar 

  125. Aryal P, Yoshikawa K, Terashita T, Guengerich FP, Shimada T, Oda Y (1999) Development of a new genotoxicity test system with Salmonella typhimurium OY1001/1A2 expressing human CYP1A2 and NADPH-P450 reductase. Mutat Res 442:113–120

    Article  CAS  Google Scholar 

  126. Aryal P, Terashita T, Guengerich FP, Shimada T, Oda Y (2000) Use of genetically engineered Salmonella typhimurium OY1002/1A2 strain coexpressing human cytochrome P450 1A2 and NADPH-cytochrome P450 reductase and bacterial O-acetyltransferase in SOS/umu assay. Environ Mol Mutagen 36:121–126

    Article  CAS  Google Scholar 

  127. Oda Y, Aryal P, Terashita T, Gillam EMJ, Guengerich FP, Shimada T (2001) Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mutat Res 492:81–90

    Article  CAS  Google Scholar 

  128. Oda Y, Totsuka Y, Wakabayashi K, Guengerich FP, Shimada T (2006) Activation of aminophenylnorharman, aminomethylphenylnorharman and aminophenylharman to genotoxic metabolites by human N-acetyltransferases and cytochrome P450 enzymes expressed in Salmonella typhimurium umu tester strains. Mutagenesis 21:411–416

    Article  CAS  Google Scholar 

  129. Oda Y, Hirayama T, Watanabe T (2009) Genotoxic activation of the environmental pollutant 3,6-dinitrobenzo[e]pyrene in Salmonella typhimurium umu strains expressing human cytochrome P450 and N-acetyltransferase. Toxicol Lett 188:258–262

    Article  CAS  Google Scholar 

  130. Oda Y, Yamazaki H, Shimada T (1999) Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in Salmonella typhimurium NM6001 and NM6002. Carcinogenesis 20:1079–1083

    Article  CAS  Google Scholar 

  131. Oda Y (2004) Analysis of the involvement of human N-acetyltransferase 1 in the genotoxic activation of bladder carcinogenic arylamines using a SOS/umu assay system. Mutat Res 554:399–406

    Article  CAS  Google Scholar 

  132. Oda Y, Zhang Y, Buchinger S, Reifferscheid G, Yang M (2012) Roles of human sulfotransferases in genotoxicity of carcinogens using genetically engineered umu test strains. Environ Mol Mutagen 53:152–164

    Article  CAS  Google Scholar 

  133. Oda Y, Yamazaki H, Their R, Ketterer B, Guengerich FP, Shimada T (1996) A new Salmonella typhimurium NM5004 strain expressing rat glutathione S-transferase 5-5: use in detection of genotoxicity of dihaloalkanes using an SOS/umu test system. Carcinogenesis 17:297–302

    Article  CAS  Google Scholar 

  134. Shimada T, Yamazaki H, Oda Y, Hiratsuka A, Watabe T, Guengerich FP (1996) Activation and inactivation of carcinogenic dihaloalkenes and other compounds by glutathione S-transferase 5-5 in Salmonella typhimurium tester strain NM5004. Chem Res Toxicol 9:333–340

    Article  CAS  Google Scholar 

  135. Habig WH, Jakoby WB (1981) Glutathione S-transferases (rat and human). Methods Enzymol 77:218–231

    Article  CAS  Google Scholar 

  136. Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser G, Ketterer B (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274:409–414

    Article  CAS  Google Scholar 

  137. Chasseaud LF (1979) The role of glutathione and glutathione transferases in the metabolism of chemical carcinogens and other electrophilic reagents. Adv Cancer Res 29:175–274

    Article  CAS  Google Scholar 

  138. Monks TJ, Anders MW, Dekant W, Stevens JL, Lau SS, van Bladeren PJ (1990) Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol 106:1–19

    Article  CAS  Google Scholar 

  139. Pemple SE, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylar JB (1994) Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–276

    Article  Google Scholar 

  140. Thier R, Taylar JB, Pemble SE, Humphreys WG, Persmark M, Ketterer B, Guengerich FP (1993) Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutation upon exposure to dihalomethanes. Proc Natl Acad Sci U S A 90:8576–8580

    Article  CAS  Google Scholar 

  141. Simura TP, Glancey MJ, Wolf CR (1993) Human glutathione S-transferase-expressing Salmonella typhimurium tester strains to study the activation/detoxification of mutagenic compounds: studies with halogenated compounds, aromatic amines and aflatoxin B1. Carcinogenesis 14:1371–1376

    Article  Google Scholar 

  142. Rosenkranz HS, Mermelstein R (1985) The genotoxicity, metabolism and carcinogenicity of nitrated polycyclic aromatic hydrocarbons. J Environ Sci Health C3:221–272

    CAS  Google Scholar 

  143. Weisburger JH (1988) Past, present, and futurerole of carcinogenic and mutagenic N-substituted aryl compounds in human cancer causation. In: King CM, Romano LJ, Schuetzele D (eds) Carcinogenic and mutagenic responses to aromatic amines and nitroarenes. Elsevier, Amsterdam, pp 3–19

    Google Scholar 

  144. Grant DM, Josephy PD, Lord HL, Morrison LD (1992) Salmonella typhimurium strains expressing human arylamine N-acetyltransferases metabolism and mutagenic activation of aromatic amines. Cancer Res 52:3961–3964

    CAS  Google Scholar 

  145. Minchin RF, Reeves PT, Teitel CH, McManus ME, Mojarrabi B, Ilett KF, Kadlubar FF (1992) N- and O-acetylation of aromatic and heterocyclic amine carcinogens by human monomorphic and polymorphic acetyltransferases expressed in COS-1 cells. Biochem Biophys Res Commun 185:839–844

    Article  CAS  Google Scholar 

  146. Watanabe M, Matsuoka A, Yamazaki N, Hayashi M, Deguchi T, Nohmi T, Sofuni T (1994) New sublines of Chinese hamster CHL stably expressing human NAT1 or NAT2 N-acetyltransferase or Salmonella typhimurium O-acetyltransferase: comparison of the sensitivities to nitroarenes and aromatic amines using the in vitro micronucleus test. Cancer Res 54:1672–1677

    CAS  Google Scholar 

  147. Poindexter EH Jr, Carpenter RO (1962) The isolation of harman and norharman from tobacco and cigarette smoke. Phytochemistry 1:215–221

    Article  CAS  Google Scholar 

  148. Totsuka Y, Ushiyama H, Ishihara J, Sinha R, Goto S, Sugimura T, Wakabayashi K (1999) Quantification of the co-mutagenic b-carbolines, norharman and harman, in cigarette smoke condensates and cooked food. Cancer Lett 143:139–143

    Article  CAS  Google Scholar 

  149. Oda Y, Watanabe T, Yamazaki H, Hirayama T (2007) Genotoxic activation of the environmental pollutant 3-nitrobenzanthrone by human cytochrome P450 enzymes expressed in Salmonella typhimurium umu tester strains. Genes Environ 29:146–152

    Article  CAS  Google Scholar 

  150. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149

    Article  CAS  Google Scholar 

  151. Oda Y, Watanabe T, Terao Y, Nukaya H, Wakabayashi K (2008) Genotoxic activation of 2-phenylbenzotriazole-type compounds by human cytochrome P4501A1 and N-acetyltransferase expressed Salmonella typhimurium umu strains. Mutat Res 654:52–57

    Article  CAS  Google Scholar 

  152. Watanabe T, Takahashi K, Konishi E, Hoshino Y, Hasei T, Asanoma M, Hirayama T, Wakabayashi K (2008) Mutagenicity of surface soil from residential areas in Kyoto city, Japan and identification of major mutagens. Mutat Res 649:201–212

    Article  CAS  Google Scholar 

  153. Coughtrie MW (2002) Sulfation and molecular action. Pharmacogenomics J 2:297–308

    Article  CAS  Google Scholar 

  154. Strott CA (2002) Sulfonation and molecular action. Endocr Rev 23:703–732

    Article  CAS  Google Scholar 

  155. Falany CN (1997) Sulfation and sulfotransferases. 3. Enzymology of human cytosolic sulfotransferases. FASEB J 11:206–216

    CAS  Google Scholar 

  156. Weishiboum RM, Ottemess DM, Akso IA, Wood TC, Her C, Raftgianis RB (1997) Sulfation and sulfotransferases. 1. Sulfotransferase molecular biology: cDNA and genes. FASEB J 11:3–14

    Google Scholar 

  157. Miller JA, Surh Y-J (1994) Sulfonation in chemical carcinogenesis. In: Kauffman FC (ed) Conjugation-deconjugation reactions in drug metabolism and toxicology. Springer, New York, pp 429–457

    Chapter  Google Scholar 

  158. Glatt H (2005) Human cytosolic sulfotransferases (Chap 13). In: Pacifici GM, Coughtrie MWH (eds) Activation and inactivation of carcinogens and mutagens by human sulfotransferases. CRC, Boca Raton, pp 279–304

    Google Scholar 

  159. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41

    Article  CAS  Google Scholar 

  160. Gamage N, Barnett A, Hempel N, Duggleby RG, Martin JL, McManus ME (2006) Human sulfotransferases and their roles in chemical metabolism. Toxicol Sci 90:5–22

    Article  CAS  Google Scholar 

  161. Glatt H, Pabel U, Meinl W, Frederikson H, Frandsen H, Muckel E (2004) Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) in recombinant test systems expressing human xenobiotic-metabolizing enzymes. Carcinogenesis 25:801–807

    Article  CAS  Google Scholar 

  162. Chou H-C, Lang NP, Kadluber FF (1995) Metabolic activation of N-hydroxy arylamines and N-hydroxy heterocyclic amines by human sulfotransferase(s). Cancer Res 55:525–529

    CAS  Google Scholar 

  163. Muckel E, Frandsen H, Glatt H (2002) Heterologous expression of human N-acetyltransferases 1 and 2 and sulfotransferase 1A1 in Salmonella typhimurium for mutagenicity testing of heterocyclic amines. Food Chem Toxicol 40:1063–1068

    Article  CAS  Google Scholar 

  164. Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Schmeiser HH, Phillip DH (2002) Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis 23:1937–1945

    Article  CAS  Google Scholar 

  165. Sodum RS, Sohn OS, Nie G, Fiala ES (1994) Activation of the liver carcinogen 2-nitropropane by arylsulfotransferase. Chem Res Toxicol 7:344–351

    Article  CAS  Google Scholar 

  166. Herrmann K, Engst W, Appel KE, Monien BH, Glatt HR (2012) Identification of human and murine sulfotransferases able to activative hydroxylated metabolites of methyleugenol to mutagens in Salmonella typhimurium and detection of associated DNA adducts using UPLC-MS/MS methods. Mutagenesis 27:453–464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimitsu Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oda, Y. (2016). Advanced Approaches to Model Xenobiotic Metabolism in Bacterial Genotoxicology In Vitro. In: Reifferscheid, G., Buchinger, S. (eds) In vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, vol 157. Springer, Cham. https://doi.org/10.1007/10_2016_4

Download citation

Publish with us

Policies and ethics