Skip to main content

Glutamate Fermentation-2: Mechanism of l-Glutamate Overproduction in Corynebacterium glutamicum

  • Chapter
  • First Online:
Amino Acid Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

The nonpathogenic coryneform bacterium, Corynebacterium glutamicum, was isolated as an l-glutamate-overproducing microorganism by Japanese researchers and is currently utilized in various amino acid fermentation processes. l-Glutamate production by C. glutamicum is induced by limitation of biotin and addition of fatty acid ester surfactants and β-lactam antibiotics. These treatments affect the cell surface structures of C. glutamicum. After the discovery of C. glutamicum, many researchers have investigated the underlying mechanism of l-glutamate overproduction with respect to the cell surface structures of this organism. Furthermore, metabolic regulation during l-glutamate overproduction by C. glutamicum, particularly, the relationship between central carbon metabolism and l-glutamate biosynthesis, has been investigated. Recently, the role of a mechanosensitive channel protein in l-glutamate overproduction has been reported. In this chapter, mechanisms of l-glutamate overproduction by C. glutamicum have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiio I, Otsuka SI, Takahashi M (1962) Effect of biotin on the bacterial formation of glutamic acid I. Glutamate formation and cellular permeability of amino acids. J Biochem 51:56–62

    Article  CAS  PubMed  Google Scholar 

  2. Takinami K, Yoshii H, Tsuri H, Okada H (1965) Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of L-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem 29:351–359

    CAS  Google Scholar 

  3. Nara T, Samejima H, Kinoshita S (1964) Effect of penicillin on amino acid fermentation. Agric Biol Chem 28:120–124

    Article  Google Scholar 

  4. Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology 151(Pt 5):1359–1368. doi:10.1099/mic.0.27804-0

    Article  CAS  PubMed  Google Scholar 

  5. Börmann ER, Eikmanns BJ, Sahm H (1992) Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6(3):317–326. doi:10.1111/j.1365-2958.1992.tb01474.x

    Article  PubMed  Google Scholar 

  6. Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61(7):1109–1112

    Article  CAS  PubMed  Google Scholar 

  7. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177(3):774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch V (ed) Amino acid biosynthesis ~ pathways, regulation and metabolic engineering, vol 5, Microbiology monographs. Springer, Heidelberg, pp 1–38. doi:10.1007/7171_2006_064

    Chapter  Google Scholar 

  9. Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S (2003) Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 25(5):291–298. doi:10.1007/s00449-002-0307-8

    Article  CAS  PubMed  Google Scholar 

  10. Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281(18):12300–12307. doi:10.1074/jbc.M512515200

    Article  CAS  PubMed  Google Scholar 

  11. Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, Cohen-Gonsaud M (2009) Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17(4):568–578. doi:10.1016/j.str.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  12. Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76(3):691–700. doi:10.1007/s00253-007-0933-9

    Article  CAS  PubMed  Google Scholar 

  13. Hirasawa T, Kim J, Shirai T, Furusawa C, Shimizu H (2012) Molecular mechanisms and metabolic engineering of glutamate overproduction in Corynebacterium glutamicum. In: Wang X, Chen J, Quinn P (ed) Reprogramming microbial metabolic pathways. Subcellular biochemistry, vol 64. Springer Netherlands, pp 261–281. doi:10.1007/978-94-007-5055-5_13

    Google Scholar 

  14. Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86(3):911–920. doi:10.1007/s00253-009-2360-6

    Article  CAS  PubMed  Google Scholar 

  15. Kim J, Hirasawa T, Saito M, Furusawa C, Shimizu H (2011) Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl Microbiol Biotechnol 91(1):143–151. doi:10.1007/s00253-011-3275-6

    Article  CAS  PubMed  Google Scholar 

  16. Boulahya KA, Guedon E, Delaunay S, Schultz C, Boudrant J, Bott M, Goergen JL (2010) OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum. Appl Microbiol Biotechnol 87(5):1867–1874. doi:10.1007/s00253-010-2599-y

    Article  CAS  PubMed  Google Scholar 

  17. O'Regan M, Thierbach G, Bachmann B, Villeval D, Lepage P, Viret JF, Lemoine Y (1989) Cloning and nucleotide sequence of the phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032. Gene 77(2):237–251

    Article  PubMed  Google Scholar 

  18. Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144(Pt 4):915–927

    Article  CAS  PubMed  Google Scholar 

  19. Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106(1):51–58. doi:10.1263/jbb.106.51

    Article  CAS  PubMed  Google Scholar 

  20. Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 6:19. doi:10.1186/1475-2859-6-19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shirai T, Matsuzaki K, Kuzumoto M, Nagahisa K, Furusawa C, Shioya S, Shimizu H (2006) Precise metabolic flux analysis of coryneform bacteria by gas chromatography-mass spectrometry and verification by nuclear magnetic resonance. J Biosci Bioeng 102(5):413–424. doi:10.1263/jbb.102.413

    Article  CAS  PubMed  Google Scholar 

  22. Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, San Diego

    Google Scholar 

  23. Hoischen C, Krämer R (1990) Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol 172(6):3409–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nampoothiri KM, Hoischen C, Bathe B, Mockel B, Pfefferle W, Krumbach K, Sahm H, Eggeling L (2002) Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of Corynebacterium glutamicum. Appl Microbiol Biotechnol 58(1):89–96. doi:10.1007/s00253-001-0861-z

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto K, Kawasaki H, Akazawa K, Nakamura J, Asakura Y, Kudo T, Sakuradani E, Shimizu S, Nakamatsu T (2006) Changes in composition and content of mycolic acids in glutamate-overproducing Corynebacterium glutamicum. Biosci Biotechnol Biochem 70(1):22–30. doi:10.1271/bbb.70.22

    Article  CAS  PubMed  Google Scholar 

  26. Kimura E, Abe C, Kawahara Y, Nakamatsu T (1996) Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum. Biosci Biotechnol Biochem 60(10):1565–1570

    Article  CAS  PubMed  Google Scholar 

  27. Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997) A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin. Biochem Biophys Res Commun 234(1):157–161

    Article  CAS  PubMed  Google Scholar 

  28. Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci Biotechnol Biochem 63(7):1274–1278

    Article  CAS  PubMed  Google Scholar 

  29. Hirasawa T, Wachi M, Nagai K (2000) A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol 182(10):2696–2701. doi:10.1128/JB.182.10.2696-2701.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirasawa T, Wachi M, Nagai K (2001) L-Glutamate production by lysozyme-sensitive Corynebacterium glutamicum ltsA mutant strains. BMC Biotechnol 1:9. doi:10.1186/1472-6750-1-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kijima N, Goyal D, Takada A, Wachi M, Nagai K (1998) Induction of only limited elongation instead of filamentation by inhibition of cell division in Corynebacterium glutamicum. Appl Microbiol Biotechnol 50(2):227–232. doi:10.1007/s002530051281

    Article  CAS  Google Scholar 

  32. Levefaudes M, Patin D, de Sousa-d'Auria C, Chami M, Blanot D, Herve M, Arthur M, Houssin C, Mengin-Lecreulx D (2015) Diaminopimelic acid amidation in Corynebacteriales: new insights into the role of LtsA in peptidoglycan modification. J Biol Chem 290:13079–13094. doi:10.1074/jbc.M115.642843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krämer R (1994) Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162(1-2):1–13

    Article  PubMed  Google Scholar 

  34. Eggeling L (2005) Export of amino acids and other solutes. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 187–211

    Chapter  Google Scholar 

  35. Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol 180(3):155–160. doi:10.1007/s00203-003-0581-0

    Article  CAS  PubMed  Google Scholar 

  36. Marin K, Krämer R (2007) Amino acid transport systems in biotechnologically relevant bacteria. In: Wendisch V (ed) Amino acid biosynthesis ~ pathways, regulation and metabolic engineering, vol 5, Microbiology monographs. Springer, Heidelberg, pp 289–325. doi:10.1007/7171_2006_069

    Chapter  Google Scholar 

  37. Gutmann M, Hoischen C, Krämer R (1992) Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112(1):115–123

    Article  CAS  PubMed  Google Scholar 

  38. Takinami K, Yoshii H, Yamada Y, Okada H, Kinoshita K (1968) Control of L-glutamic acid fermentation by biotin and fatty acid. Amino Acids Nucleic Acids 18:120–160

    Google Scholar 

  39. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73(4):1308–1319. doi:10.1128/AEM.01867-06

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73(14):4491–4498. doi:10.1128/AEM.02446-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wachi M (2013) Amino acid exporters in Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum -biology and biotechnology, vol 23, Microbiology monographs. Springer, Heidelberg, pp 335–349

    Chapter  Google Scholar 

  42. Börngen K, Battle AR, Moker N, Morbach S, Marin K, Martinac B, Krämer R (2010) The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim Biophys Acta 1798(11):2141–2149. doi:10.1016/j.bbamem.2010.06.022

    Article  PubMed  Google Scholar 

  43. Hashimoto K, Nakamura K, Kuroda T, Yabe I, Nakamatsu T, Kawasaki H (2010) The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Biosci Biotechnol Biochem 74(12):2546–2549. doi:10.1271/bbb.100636

    Article  CAS  PubMed  Google Scholar 

  44. Hashimoto K, Murata J, Konishi T, Yabe I, Nakamatsu T, Kawasaki H (2012) Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion. Biosci Biotechnol Biochem 76(7):1422–1424. doi:10.1271/bbb.120366

    Article  CAS  PubMed  Google Scholar 

  45. Becker M, Börngen K, Nomura T, Battle AR, Marin K, Martinac B, Krämer R (2013) Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 1828(4):1230–1240. doi:10.1016/j.bbamem.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  46. Yamashita C, Hashimoto K, Kumagai K, Maeda T, Takada A, Yabe I, Kawasaki H, Wachi M (2013) L-Glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel. Biosci Biotechnol Biochem 77(5):1008–1013. doi:10.1271/bbb.120988

    Article  CAS  PubMed  Google Scholar 

  47. Nakayama Y, Yoshimura K, Iida H (2012) A gain-of-function mutation in gating of Corynebacterium glutamicum NCgl1221 causes constitutive glutamate secretion. Appl Environ Microbiol 78(15):5432–5434. doi:10.1128/AEM.01310-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nottebrock D, Meyer U, Krämer R, Morbach S (2003) Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol Lett 218(2):305–309. doi:10.1111/j.1574-6968.2003.tb11533.x

    Article  CAS  PubMed  Google Scholar 

  49. Nakayama Y, Yoshimura K, Iida H (2013) Electrophysiological characterization of the mechanosensitive channel MscCG in Corynebacterium glutamicum. Biophys J 105(6):1366–1375. doi:10.1016/j.bpj.2013.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58(3):265–274. doi:10.1007/s00253-001-0869-4

    Article  CAS  PubMed  Google Scholar 

  51. Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv 29(1):11–23. doi:10.1016/j.biotechadv.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  52. Kelle R, Hermann T, Bathe B (2005) L-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488

    Google Scholar 

  53. Simic P, Sahm H, Eggeling L (2001) L-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183(18):5317–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22(5):815–826

    Article  PubMed  Google Scholar 

  55. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2-3):99–109. doi:10.1007/s00253-003-1328-1

    Article  CAS  PubMed  Google Scholar 

  56. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1-3):5–25. doi:10.1016/S0168-1656(03)00154-8

    Article  CAS  PubMed  Google Scholar 

  57. Lv Y, Liao J, Wu Z, Han S, Lin Y, Zheng S (2012) Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria. J Bacteriol 194(3):742–743. doi:10.1128/JB.06514-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lv Y, Wu Z, Han S, Lin Y, Zheng S (2011) Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol 193(21):6096–6097. doi:10.1128/JB.06074-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153(Pt 4):1042–1058. doi:10.1099/mic.0.2006/003657-0

    Article  CAS  PubMed  Google Scholar 

  60. Kataoka M, Hashimoto KI, Yoshida M, Nakamatsu T, Horinouchi S, Kawasaki H (2006) Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol 42(5):471–476. doi:10.1111/j.1472-765X.2006.01905.x

    Article  CAS  PubMed  Google Scholar 

  61. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597. doi:10.1002/bit.22067

    Article  CAS  PubMed  Google Scholar 

  62. Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43. doi:10.1186/1475-2859-8-43

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Wachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hirasawa, T., Wachi, M. (2016). Glutamate Fermentation-2: Mechanism of l-Glutamate Overproduction in Corynebacterium glutamicum . In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_26

Download citation

Publish with us

Policies and ethics