Skip to main content

Toxicogenomics in Environmental Science

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 157))

Abstract

This chapter reviews the current knowledge and recent progress in the field of environmental, aquatic ecotoxicogenomics with a focus on transcriptomic methods. In ecotoxicogenomics the omics technologies are applied for the detection and assessment of adverse effects in the environment, and thus are to be distinguished from omics used in human toxicology [Snape et al., Aquat Toxicol 67:143–154, 2004]. Transcriptomic methods in ecotoxicology are applied to gain a mechanistic understanding of toxic effects on organisms or populations, and thus aim to bridge the gap between cause and effect. A worthwhile effect-based interpretation of stressor induced changes on the transcriptome is based on the principle of phenotypic-anchoring [Paules, Environ Health Perspect 111:A338–A339, 2003]. Thereby, changes on the transcriptomic level can only be identified as effects if they are clearly linked to a specific stressor-induced effect on the macroscopic level. By integrating those macroscopic and transcriptomic effects, conclusions on the effect-inducing type of the stressor can be drawn. Stressor-specific effects on the transcriptomic level can be identified as stressor-specific induced pathways, transcriptomic patterns, or stressors-specific genetic biomarkers. In this chapter, examples of the combined application of macroscopic and transcriptional effects for the identification of environmental stressors, such as aquatic pollutants, are given and discussed. By means of these examples, challenges on the way to a standardized application of transcriptomics in ecotoxicology are discussed. This is also done against the background of the application of transcriptomic methods in environmental regulation such as the EU regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nuwaysir EF, Bittner M, Trent J et al (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog 24:153–159. doi: 10.1002/(SICI)1098-2744(199903)24:3<153::AID-MC1>3.0.CO;2-P

    Article  CAS  Google Scholar 

  2. Calzolai L, Ansorge W, Calabrese E et al (2007) Transcriptomics and proteomics. Applications to ecotoxicology. Comp Biochem Physiol Part D Genomics Proteomics 2:245–249. doi:10.1016/j.cbd.2007.04.007

    Article  Google Scholar 

  3. Monsinjon T, Knigge T (2007) Proteomic applications in ecotoxicology. Proteomics 7:2997–3009. doi:10.1002/pmic.200700101

    Article  CAS  Google Scholar 

  4. Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21. doi:10.1007/s11306-008-0152-0

    Article  CAS  Google Scholar 

  5. Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21:180–205. doi:10.1139/er-2013-0011

    Article  CAS  Google Scholar 

  6. European Food Safety Authority (2014) Modern methodologies and tools for human hazard assessment of chemicals. EFSA J 12(4):3638:87 pp. doi:10.2903/j.efsa.2014.3638

  7. Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67:143–154. doi:10.1016/j.aquatox.2003.11.011

    Article  CAS  Google Scholar 

  8. Schirmer K, Fischer B, Madureira D, Pillai S (2010) Transcriptomics in ecotoxicology. Anal Bioanal Chem 397:917–923. doi:10.1007/s00216-010-3662-3

    Article  CAS  Google Scholar 

  9. Paules R (2003) Phenotypic anchoring: linking cause and effect. Environ Health Perspect 111:A338–A339

    Article  Google Scholar 

  10. Simmons DBD, Benskin JP, Cosgrove JR et al (2015) Omics for aquatic ecotoxicology; control of extraneous variability to enhance the analysis of environmental effects. Environ Toxicol Chem 34:1693–1704. doi:10.1002/etc.3002

    Article  CAS  Google Scholar 

  11. Grisham JW (1983) Cell types in rat liver cultures: their identification and isolation. In: Najjar VA (ed) Enzyme induction modules. Springer, Boston, pp 23–33

    Chapter  Google Scholar 

  12. Marceau N, Blouin M-J, Germain L, Noel M (1989) Role of different epithelial cell types in liver ontogenesis, regeneration and neoplasia. In Vitro Cell Dev Biol 25:336–341. doi:10.1007/BF02624596

    Article  CAS  Google Scholar 

  13. Heisenberg W (1971) Physics and beyond: encounters and conversations. G. Allen & Unwin, London

    Google Scholar 

  14. Canelas AB, Ras C, ten Pierick A et al (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239. doi:10.1007/s11306-008-0116-4

    Article  CAS  Google Scholar 

  15. Teng Q, Huang W, Collette TW et al (2009) A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5:199–208. doi:10.1007/s11306-008-0137-z

    Article  CAS  Google Scholar 

  16. Tufi S, Lamoree MH, De Boer J, Leonards PEG (2015) Cross-platform metabolic profiling: application to the aquatic model organism Lymnaea stagnalis. Anal Bioanal Chem 407:1901–1912. doi:10.1007/s00216-014-8431-2

    Article  CAS  Google Scholar 

  17. Afshari CA, Hamadeh HK, Bushel PR (2011) The evolution of bioinformatics in toxicology: advancing toxicogenomics. Toxicol Sci 120:S225–S237. doi:10.1093/toxsci/kfq373

    Article  CAS  Google Scholar 

  18. Ju Z, Wells MC, Walter RB (2006) DNA microarray technology in toxicogenomics of aquatic models: methods and applications. Comp Biochem Physiol Part C Toxicol Pharmacol 145:5–14. doi:10.1016/j.cbpc.2006.04.017

    Article  Google Scholar 

  19. Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114:4–9. doi:10.1289/ehp.8194

    CAS  Google Scholar 

  20. Slonim DK, Yanai I (2009) Getting started in gene expression microarray analysis. PLos Comput Biol 5, E1000543. doi:10.1371/journal.pcbi.1000543

    Article  Google Scholar 

  21. Slonim D (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32:502–508. doi:10.1038/ng1033

    Article  CAS  Google Scholar 

  22. Hamadeh HK, Amin RP, Paules RS, Afshari CA (2002) An overview of toxicogenomics. Curr Issues Mol Biol 4:45–56

    CAS  Google Scholar 

  23. Gayral P, Weinert L, Chiari Y et al (2011) Next-generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Mol Ecol Resour 11:650–661. doi:10.1111/j.1755-0998.2011.03010.x

    Article  CAS  Google Scholar 

  24. Fleige S, Walf V, Huch S et al (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28:1601–1613

    Article  CAS  Google Scholar 

  25. Mueller O, Lightfoot S, Schroder A (2004) RNA integrity number (RIN) standardization of RNA quality control. Tech Rep 5989-1165EN Agilent Application Note

    Google Scholar 

  26. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi:10.1186/1471-2199-7-3

    Article  Google Scholar 

  27. Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W and Shi L (2011) Next-generation sequencing: a revolutionary tool for toxicogenomics. In: General, applied and systems toxicology. doi:10.1002/9780470744307.gat232

  28. Heid C, Stevens J, Livak K, Williams P (1996) Real time quantitative PCR. Genome Res 6:986–994. doi:10.1101/gr.6.10.986

    Article  CAS  Google Scholar 

  29. Karlen Y, McNair A, Perseguers S et al (2007) Statistical significance of quantitative PCR. BMC Bioinf 8:131. doi:10.1186/1471-2105-8-131

    Article  Google Scholar 

  30. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DeltaDeltaCt method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  31. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582. doi:10.1038/nprot.2006.236

    Article  CAS  Google Scholar 

  32. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45

    Article  CAS  Google Scholar 

  33. Pfaffl M (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A-Z of quantitative PCR 1. International University Line, La Jolla, pp 89–113

    Google Scholar 

  34. Regier N, Frey B (2010) Experimental comparison of relative RT-qPCR quantification approaches for gene expression studies in poplar. BMC Mol Biol 11:57. doi:10.1186/1471-2199-11-57

    Article  Google Scholar 

  35. Hook SE, Osborn HL, Spadaro DA, Simpson SL (2014) Assessing mechanisms of toxicant response in the amphipod Melita plumulosa through transcriptomic profiling. Aquat Toxicol 146:247–257. doi:10.1016/j.aquatox.2013.11.001

    Article  CAS  Google Scholar 

  36. Hook SE, Twine NA, Simpson SL et al (2014) 454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes. Aquat Toxicol 153:73–88. doi:10.1016/j.aquatox.2013.11.022

    Article  CAS  Google Scholar 

  37. Hook S, Osborn H, Spadaro D, Simpson S (2014) Challenges for using quantitative PCR test batteries as a TIE-type approach to identify metal exposure in benthic invertebrates. Environ Sci Pollut Res 22:17280–17289. doi:10.1007/s11356-014-3234-8

    Article  Google Scholar 

  38. Regier N, Baerlocher L, Munsterkotter M et al (2013) Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing. Environ Sci Technol 26:26. doi:10.1021/es401082h

    Google Scholar 

  39. Geiss GK, Bumgarner RE, Birditt B et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325. doi:10.1038/nbt1385

    Article  CAS  Google Scholar 

  40. Jo HJ, Jung J (2008) Quantification of differentially expressed genes in Daphnia magna exposed to rubber wastewater. Chemosphere 73:261–266. doi:10.1016/j.chemosphere.2008.06.038

    Article  CAS  Google Scholar 

  41. Wang R-L, Bencic D, Biales A et al (2008) DNA microarray-based ecotoxicological biomarker discovery in a small fish model species. Environ Toxicol Chem 27:664–675. doi:10.1897/07-192.1

    Article  Google Scholar 

  42. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. doi:10.1038/415530a

    Article  Google Scholar 

  43. Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  Google Scholar 

  44. Van Aggelen G, Ankley GT, Baldwin WS et al (2010) Integrating omic technologies into aquatic ecological risk assessment and environmental monitoring: hurdles, achievements, and future outlook. Environ Health Perspect 118:1–5. doi:10.1289/ehp.0900985

    Google Scholar 

  45. Hawliczek A, Nota B, Cenijn P et al (2012) Developmental toxicity and endocrine disrupting potency of 4-azapyrene, benzo[b]fluorene and retene in the zebrafish Danio rerio. Reprod Toxicol 33:213–223. doi:10.1016/j.reprotox.2011.11.001

    Article  CAS  Google Scholar 

  46. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinf 10:1–7. doi:10.1186/1471-2105-10-48

    Article  Google Scholar 

  47. Carbon S, Ireland A, Mungall CJ et al (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289. doi:10.1093/bioinformatics/btn615

    Article  CAS  Google Scholar 

  48. Zeeberg BR, Feng W, Wang G et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28. doi:10.1186/gb-2003-4-4-r28

    Article  Google Scholar 

  49. Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580. doi:10.1093/bioinformatics/btg455

    Article  CAS  Google Scholar 

  50. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3. doi:10.1186/gb-2003-4-9-r60

    Article  Google Scholar 

  51. Heckmann L-H, Sibly RM, Connon R et al (2008) Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biol 9:R40. doi:10.1186/gb-2008-9-2-r40

    Article  Google Scholar 

  52. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. doi:10.1002/etc.34

    Article  CAS  Google Scholar 

  53. OECD (2013) Guidance document on developing and assessing adverse outcome pathways. Series on Testing and Assessment No. 184, ENV/JM/MONO(2013)6

    Google Scholar 

  54. Schmidt CW (2009) TOX 21: new dimensions of toxicity testing. Environ Health Perspect 117:A348–A353. doi:10.1289/ehp.117-a348

    Article  Google Scholar 

  55. Gocht T (2014) The SEURAT-1 approach towards animal free human safety assessment. ALTEX 32:9–24. doi:http://dx.doi.org/10.14573/altex.1408041

  56. Corvi R, Ahr H-J, Albertini S et al (2005) Meeting report: validation of toxicogenomics-based test systems: ECVAM–ICCVAM/NICEATM considerations for regulatory use. Environ Health Perspect 114:420–429. doi:10.1289/ehp.8247

    Article  Google Scholar 

  57. OECD (2012) The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 2: Use of the AOP to develop chemical categories and integrated assessment and testing approaches. Series on Testing and Assessment No. 168, ENV/JM/MONO(2012)10/PART2

    Google Scholar 

  58. Ankley GT, Daston GP, Degitz SJ et al (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065. doi:10.1021/es0630184

    Article  CAS  Google Scholar 

  59. Kwok KH, Batley G, Wenning R et al (2014) Sediment quality guidelines: challenges and opportunities for improving sediment management. Environ Sci Pollut Res 21:17–27. doi:10.1007/s11356-013-1778-7

    Article  Google Scholar 

  60. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC

    Google Scholar 

  61. Wernersson A-S, Carere M, Maggi C et al (2015) The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ Sci Eur. doi:10.1186/s12302-015-0039-4

    Google Scholar 

  62. Berggren E, Amcoff P, Benigni R et al (2015) Chemical safety assessment using read-across: assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ Health Perspect 123(12):1232–1240. doi:10.1289/ehp.1409342

    Article  Google Scholar 

  63. Schultz TW, Amcoff P, Berggren E et al (2015) A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol 72:586–601. doi:10.1016/j.yrtph.2015.05.016

    Article  CAS  Google Scholar 

  64. Weil M, Scholz S, Zimmer M et al (2009) Gene expression analysis in zebrafish embryos: a potential approach to predict effect concentrations in the fish early life stage test. Environ Toxicol Chem 28:1970–1978. doi:10.1897/08-627.1

    Article  CAS  Google Scholar 

  65. Tralau T, Luch A (2015) Moving from rats to cellular omics in regulatory toxicology: great challenge toward sustainability or “up-shit-creek without a paddle”? Arch Toxicol 89:819–821. doi:10.1007/s00204-015-1511-z

    Article  CAS  Google Scholar 

  66. Tralau T, Oelgeschläger M, Gürtler R et al (2015) Regulatory toxicology in the twenty-first century: challenges, perspectives and possible solutions. Arch Toxicol 89:823–850. doi:10.1007/s00204-015-1510-0

    Article  CAS  Google Scholar 

  67. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME) toward standards for microarray data. Nat Genet 29:365–371. doi:10.1038/ng1201-365

    Article  CAS  Google Scholar 

  68. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  Google Scholar 

  69. Jeong SW, Lee SM, Yum SS et al (2013) Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity. Mol Cell Toxicol 9:149–158. doi:10.1007/s13273-013-0019-y

    Article  CAS  Google Scholar 

  70. Poynton HC, Robinson WE, Blalock BJ, Hannigan RE (2014) Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress. Aquat Toxicol 155:129–141. doi:10.1016/j.aquatox.2014.06.015

    Article  CAS  Google Scholar 

  71. Chi Hoa P, Park KS, Kim BC et al (2011) Construction and characterization of Japanese medaka (Oryzias latipes) hepatic cDNA library and its implementation to biomarker screening in aquatic toxicology. Aquat Toxicol 105:569–575. doi:10.1016/j.aquatox.2011.08.019

    Article  Google Scholar 

  72. Rhee JS, Kim BM, Jeong CB et al (2013) Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comp Biochem Physiol Part C Toxicol Pharmacol 158:216–224. doi:10.1016/j.cbpc.2013.08.005

    Article  CAS  Google Scholar 

  73. Morales M, Planello R, Martinez-Paz P et al (2011) Characterization of Hsp70 gene in Chironomus riparius: expression in response to endocrine disrupting pollutants as a marker of ecotoxicological stress. Comp Biochem Physiol Part C Toxicol Pharmacol 153:150–158. doi:10.1016/j.cbpc.2010.10.003

    Article  Google Scholar 

  74. Planello R, Servia MJ, Gomez-Sande P et al (2015) Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants. Environ Toxicol 30:383–395. doi:10.1002/tox.21893

    Article  CAS  Google Scholar 

  75. Salaberria I, Brakstad OG, Olsen AJ et al (2014) Endocrine and AhR-CYP1A pathway responses to the water-soluble fraction of oil in zebrafish (Danio rerio Hamilton). J Toxicol Environ Health A 77:506–515. doi:10.1080/15287394.2014.886983

    Article  CAS  Google Scholar 

  76. Hong Y, Liu S, Lin X et al (2015) Recognizing the importance of exposure–dose–response dynamics for ecotoxicity assessment: nitrofurazone-induced antioxidase activity and mRNA expression in model protozoan Euplotes vannus. Environ Sci Pollut Res Int 22(12):9544–9553. doi:10.1007/s11356-015-4096-4

    Article  CAS  Google Scholar 

  77. Defo MA, Bernatchez L, Campbell PGC, Couture P (2015) Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field. Aquat Toxicol 162:39–53. doi:10.1016/j.aquatox.2015.02.014

    Article  CAS  Google Scholar 

  78. Beggel S, Connon R, Werner I, Geist J (2011) Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat Toxicol 105:180–188. doi:10.1016/j.aquatox.2011.06.004

    Article  CAS  Google Scholar 

  79. Ruiz P, Ortiz-Zarragoitia M, Orbea A et al (2012) Responses of conventional and molecular biomarkers in turbot Scophthalmus maximus exposed to heavy fuel oil no. 6 and styrene. Aquat Toxicol 116–117:116–128. doi:10.1016/j.aquatox.2012.02.004

    Article  Google Scholar 

  80. Hook SE, Osborn HL, Golding LA et al (2014) Dissolved and particulate copper exposure induces differing gene expression profiles and mechanisms of toxicity in the deposit feeding amphipod Melita plumulosa. Environ Sci Technol 48:3504–3512. doi:10.1021/es405322s

    Article  CAS  Google Scholar 

  81. Hutchins CM, Simon DF, Zerges W, Wilkinson KJ (2010) Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures. Aquat Toxicol 100:120–127. doi:10.1016/j.aquatox.2010.07.017

    Article  CAS  Google Scholar 

  82. Chakrabarty D, Trivedi PK, Misra P et al (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702. doi:10.1016/j.chemosphere.2008.09.082

    Article  CAS  Google Scholar 

  83. Carvalho RN, Bopp SK, Lettieri T (2010) Gene and protein regulation in the marine diatom Thalassiosira pseudonana upon exposure to polycyclic aromatic hydrocarbons. Comp Biochem Physiol Mol Integr Physiol 157:S51–S52. doi:10.1016/j.cbpa.2010.06.146

    Article  Google Scholar 

  84. Carvalho RN, Bopp SK, Lettieri T (2011) Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo(a)pyrene. PLos One 6:9. doi:10.1371/journal.pone.0026985

    Google Scholar 

  85. Carvalho RN, Burchardt AD, Sena F et al (2011) Gene biomarkers in diatom Thalassiosira pseudonana exposed to polycyclic aromatic hydrocarbons from contaminated marine surface sediments. Aquat Toxicol 101:244–253. doi:10.1016/j.aquatox.2010.10.004

    Article  CAS  Google Scholar 

  86. Eom HJ, Kim H, Kim BM et al (2014) Integrative assessment of benzene exposure to Caenorhabditis elegans using computational behavior and toxicogenomic analyses. Environ Sci Technol 48:8143–8151. doi:10.1021/es500608e

    Article  CAS  Google Scholar 

  87. Zucchi S, Mirbahai L, Castiglioni S, Fent K (2014) Transcriptional and physiological responses induced by binary mixtures of drospirenone and progesterone in zebrafish (Danio rerio). Environ Sci Technol 48:3523–3531. doi:10.1021/es405584f

    Article  CAS  Google Scholar 

  88. Schiller V, Wichmann A, Kriehuber R et al (2013) Transcriptome alterations in zebrafish embryos after exposure to environmental estrogens and anti-androgens can reveal endocrine disruption. Reprod Toxicol 42:210–223. doi:10.1016/j.reprotox.2013.09.003

    Article  CAS  Google Scholar 

  89. Martyniuk CJ, Doperalski NJ, Kroll KJ et al (2013) Sexually dimorphic transcriptomic responses in the teleostean hypothalamus: a case study with the organochlorine pesticide dieldrin. Neurotoxicology 34:105–117. doi:10.1016/j.neuro.2012.09.012

    Article  CAS  Google Scholar 

  90. Bissegger S, Martyniuk CJ, Langlois VS (2014) Transcriptomic profiling in Silurana tropicalis testes exposed to finasteride. Gen Comp Endocrinol 203:137–145. doi:10.1016/j.ygcen.2014.01.018

    Article  CAS  Google Scholar 

  91. Huang L, Zuo Z, Zhang Y, Wang C (2015) Toxicogenomic analysis in the combined effect of tributyltin and benzo[a]pyrene on the development of zebrafish embryos. Aquat Toxicol 158:157–164. doi:10.1016/j.aquatox.2014.10.024

    Article  CAS  Google Scholar 

  92. Cassese A, Guindani M, Antczak P et al (2015) A Bayesian model for the identification of differentially expressed genes in Daphnia magna exposed to munition pollutants. Biometrics 71:803–811. doi:10.1111/biom.12303

    Article  CAS  Google Scholar 

  93. Garcia-Reyero N, Escalon BL, Loh P et al (2012) Assessment of chemical mixtures and groundwater effects on Daphnia magna transcriptomics. Environ Sci Technol 46:42–50. doi:10.1021/es201245b

    Article  CAS  Google Scholar 

  94. Garcia-Reyero N (2015) Are adverse outcome pathways here to stay? Environ Sci Technol 49:3–9. doi:10.1021/es504976d

    Article  CAS  Google Scholar 

  95. Pascoal S, Carvalho G, Vasieva O et al (2013) Transcriptomics and in vivo tests reveal novel mechanisms underlying endocrine disruption in an ecological sentinel, Nucella lapillus. Mol Ecol 22:1589–1608. doi:10.1111/mec.12137

    Article  CAS  Google Scholar 

  96. Yang L, Kemadjou J, Zinsmeister C et al (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol 8:R227. doi:10.1186/gb-2007-8-10-r227

    Article  Google Scholar 

  97. Menzel R, Swain S, Hoess S et al (2009) Gene expression profiling to characterize sediment toxicity - a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160. doi:10.1186/1471-2164-10-160

    Article  Google Scholar 

  98. Huang LX, Zuo ZH, Zhang YY et al (2014) Use of toxicogenomics to predict the potential toxic effect of benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. Chemosphere 108:55–61. doi:10.1016/j.chemosphere.2014.02.078

    Article  CAS  Google Scholar 

  99. Gomez-Sagasti MT, Becerril JM, Martin I et al (2014) cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals. Cell Biol Toxicol 30:207–232. doi:10.1007/s10565-014-9281-6

    Article  CAS  Google Scholar 

  100. Voelker D, Vess C, Tillmann M et al (2007) Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquat Toxicol 81:355–364. doi:10.1016/j.aquatox.2006.12.013

    Article  CAS  Google Scholar 

  101. Filby AL, Santos EM, Thorpe KL et al (2007) Gene expression profiling for understanding chemical causation of biological effects for complex mixtures: a case study on estrogens. Environ Sci Technol 41:8187–8194. doi:10.1021/es071278v

    Article  CAS  Google Scholar 

  102. Marchand J, Tanguy A, Charrier G et al (2006) Molecular identification and expression of differentially regulated genes of the European flounder, Platichthys flesus, submitted to pesticide exposure. Mar Biotechnol 8:275–294. doi:10.1007/s10126-005-0099-3

    Article  CAS  Google Scholar 

  103. Villeneuve DL, Wang R-L, Bencic DC et al (2009) Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation. Environ Toxicol Chem 28:1767–1782. doi:10.1897/08-653.1

    Article  CAS  Google Scholar 

  104. Garcia-Reyero N, Adelman I, Liu L, Denslow N (2008) Gene expression profiles of fathead minnows exposed to surface waters above and below a sewage treatment plant in Minnesota. Mar Environ Res 66:134–136. doi:10.1016/j.marenvres.2008.02.073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Brinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Swirzerland

About this chapter

Cite this chapter

Brinke, A., Buchinger, S. (2016). Toxicogenomics in Environmental Science. In: Reifferscheid, G., Buchinger, S. (eds) In vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, vol 157. Springer, Cham. https://doi.org/10.1007/10_2016_15

Download citation

Publish with us

Policies and ethics