Skip to main content

Anaerobes in Industrial- and Environmental Biotechnology

  • Chapter
  • First Online:
Book cover Anaerobes in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 156))

Abstract

Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

The original version of this chapter was revised. In figure 2, Cellulos has been corrected to Cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

E0 :

Reduction potential

EGSB:

Expanded granular sludge bed

GAP:

Glyceraldehyde-3-phosphate

3-HPA:

3-Hydroxypropionaldehyde

3-HP:

3-Hydroxypropionic acid

NADH:

Nicotinamide adenine dinucleotide reduced

1,3-PDO:

1,3-Propanediol

RTCA:

Reductive tricarboxylic acid

RuBP:

Ribulose-1,5-biphosphate

SRB:

Sulfate reducing bacteria

UASB:

Upflow anaerobic sludge bed

ΔGo´:

Free energy change under standard conditions

References

  1. Mamo G (2016) Anaerobes as sources of bioactive compounds and health promoting tools. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_15

    Google Scholar 

  2. Honkalas V, Dabir A, Dhakephalkar P (2016) Life in anoxic sub-seafloor environment: linking microbial metabolism and mega reserves of methane hydrate. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_9

    Google Scholar 

  3. van Niel EWJ (2016) Biological processes for hydrogen production. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_7

    Google Scholar 

  4. Schnurer A (2016) Biogas production - microbiology and technology. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_8

    Google Scholar 

  5. Kokko ME, Mäkinen AE, Puhakka JA (2016) Anaerobes in bioelectrochemical systems. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_10

    Google Scholar 

  6. Wang J, Lin M, Xu M, Yang S-T (2016) Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_12

    Google Scholar 

  7. Erickson LE, Fung DYC (2010) Anaerobes. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, Hoboken

    Google Scholar 

  8. van Lier JB, van de Zee FP, Frijters CTMJ, Ersahin ME (2016) Development of anaerobic high rate reactors, focusing on sludge bed technology. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_13

    Google Scholar 

  9. Daniell J, Nagaraju S, Köpke M, Simpson SD (2016) Low carbon-fuel and chemical production by anaerobic gas fermentation. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_11

    Google Scholar 

  10. Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Pearson Prentice Hall, New Jersey

    Google Scholar 

  11. Munir R, Levin DB (2016) Enzyme systems of anaerobes for biomass conversion. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_5

    Google Scholar 

  12. Frigaard N-U (2016) Biotechnology of anoxygenic phototrophic bacteria. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_6

    Google Scholar 

  13. Bragger JM, Daniel RM, Coolbear T, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl Microbiol Biotechnol 31:556–561

    Article  CAS  Google Scholar 

  14. Littlechild JA (2015) Archaeal enzymes and applications in industrial biocatalysts. Archaea 2015, 10.1155/2015/147671

  15. Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341

    Article  CAS  Google Scholar 

  16. Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40:333–340

    Article  CAS  Google Scholar 

  17. Ying Y, Meng D, Chen X, Li F (2013) An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzyme Microb Technol 53:194–199

    Article  CAS  Google Scholar 

  18. Flint HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann NY Acad Sci 1125:280–288

    Article  CAS  Google Scholar 

  19. Cai S, Li J, Hu FZ, Zhang K, Luo Y, Janto B, Boissy R, Ehrlich G, Dong X (2010) Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate-borne fibrolytic enzymes. Appl Environ Microbiol 76:3818–3824

    Article  CAS  Google Scholar 

  20. Selinger LB, Forsberg CW, Cheng K-J (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2:263–284

    Article  CAS  Google Scholar 

  21. Teunissen MJ, Op den Camp HJM (1993) Anaerobic fungi and their cellulytic and xylanolytic enzymes. Antonie van Leewen 63:63–76

    Article  CAS  Google Scholar 

  22. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  23. Sprenger GA (1996) Carbohydrate metabolism in Zymomonas mobilis: a catabolic pathway with some scenic routes. FEMS Microbiol Lett 145:301–307

    Article  CAS  Google Scholar 

  24. Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  CAS  Google Scholar 

  25. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  CAS  Google Scholar 

  26. Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3:301–307

    Article  CAS  Google Scholar 

  27. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  28. Van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Engin/Biotechnol 108:205–235

    Article  CAS  Google Scholar 

  29. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–16

    Article  CAS  Google Scholar 

  30. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  Google Scholar 

  31. Hu CK, Bai FW, An LJ (2005) Effect of the flocculating of a self-flocculating yeast on its ethanol tolerance and corresponding mechanisms. Chin J Biotechnol 21:123–128

    CAS  Google Scholar 

  32. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405

    Article  CAS  Google Scholar 

  33. Madson PW, Monceaux DA (1999) Fuel ethanol production, in the alcohol textbook, 3rd edn. Nottingham University Press, UK

    Google Scholar 

  34. Joannis-Cassan C, Riess J, Jolibert F, Taillandier P (2014) Optimization of very high gravity fermentation process for ethanol production from industrial sugar beet syrup. Biomass Bioenergy 70:165–173

    Article  CAS  Google Scholar 

  35. Puligundla P, Smogrovicova D, Obulam VSR, Ko S (2011) Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 38:1133–1144

    Article  CAS  Google Scholar 

  36. Liu C-G, Wang N, Lin Y-H, Bai F-W (2012) Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions. Biotechnol Biofuels 5:61

    Article  CAS  Google Scholar 

  37. Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances on biobutanol production. Sustain Chem Proc 2:15

    Article  Google Scholar 

  38. Ezeji TC, Qureshi N, Blaschek HP (2004) Butanol fermentation research: upstream and downstream manipulations. Chem Record 4:305–314

    Article  CAS  Google Scholar 

  39. Chen CK, Blaschek HP (1999) Acettae enhances solvent production and prevents degeneration in Clostridium beijernckii BA101. Appl Microbiol Biotechnol 52:170–173

    Article  CAS  Google Scholar 

  40. Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291

    Article  CAS  Google Scholar 

  41. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658

    Article  CAS  Google Scholar 

  42. Qureshi N, Blaschek HP (1999) Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog 15:594–602

    Article  CAS  Google Scholar 

  43. Tanaka S, Tashiro Y, Kobayashi G, Ikegami T, Negishi H, Sakaki K (2012) Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1-4 with 1-dodecanol as the extractant. Bioresour Technol 116:448–452

    Article  CAS  Google Scholar 

  44. Mariano AP, Angelis DF, Maugeri F, Atala DIP, Maciel MRW, Maciel Filho R (2008) An alternative process for butanol production: continuous flash fermentation. Chem Prod Process Mode 3:34

    Google Scholar 

  45. Qureshi N, Lai LL, Blaschek HP (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Proc 82:164–173

    Article  CAS  Google Scholar 

  46. Liu D, Chen Y, Ding F-Y, Zhao T, Wu J-L, Guo T, Ren H-F et al (2014) Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnol Biofuels 7:5

    Article  CAS  Google Scholar 

  47. Li J, Baral NR, Jha AK (2014) Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 30:1145–1157

    Article  CAS  Google Scholar 

  48. Qureshi N, Saha BC, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II – Fed batch fermentation. Biomass Bioenergy 32:176–183

    Article  CAS  Google Scholar 

  49. Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28

    Article  CAS  Google Scholar 

  50. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  Google Scholar 

  51. Freund A (1881) Über die bildung und darstellung von trimethylenealkohol aus glycerin. Monatsh Chem 2:636–641

    Article  Google Scholar 

  52. Biebl H, Menzel K, Zeng A-P, Deckwer W-D (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  53. Homann T, Tag C, Biebl H, Deckwer W-D, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126

    Article  CAS  Google Scholar 

  54. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104:1098–1106

    Article  CAS  Google Scholar 

  55. Oh B-R, Seo J-W, Heo S-Y, Hong W-K, Luo LH, Kim S, Park D-H, Kim CH (2012) Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae. Appl Biochem Biotechnol 166:127–137

    Article  CAS  Google Scholar 

  56. De Souza EA, Rossi DM, Ayub MAZ (2014) Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol using immobilized cells of Klebsiella pneumoniae BLh-1. Renew Energy 72:253–257

    Article  CAS  Google Scholar 

  57. Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063

    Article  CAS  Google Scholar 

  58. Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336

    Article  CAS  Google Scholar 

  59. Pflügl S, Marx H, Mattanovich D, Sauer M (2012) 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour Technol 119:133–140

    Article  CAS  Google Scholar 

  60. Dishisha T, Pereyra LP, Pyo S-H, Britton RA, Hatti-Kaul R (2014) Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb Cell Fact 13:76

    Article  CAS  Google Scholar 

  61. Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, Warren MJ, Prentice MB (2008) Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J Bacteriol 190:4559–4567

    Article  CAS  Google Scholar 

  62. Sardari RRR, Dishisha T, Pyo S-H, Hatti-Kaul R (2013) Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol. Biotechnol Bioeng 110:1243–1248

    Article  CAS  Google Scholar 

  63. Sardari RRR, Dishisha T, Pyo S-H, Hatti-Kaul R (2013) Biotransformation of glycerol to 3-hydroxypropionaldehyde: improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger. J Biotechnol 168:534–542

    Article  CAS  Google Scholar 

  64. Malaviya A, Jang Y-S, Lee SY (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol 93:1485–1494

    Article  CAS  Google Scholar 

  65. Jarvis GN et al (1997) Formate and ethanol are the major products of glycerol fermentation produced by Klebsiella planticola strain isolated from red deer. J Appl Microbiol 83:166–174

    Article  CAS  Google Scholar 

  66. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265

    Article  CAS  Google Scholar 

  67. Dishisha T, Alvarez MT, Hatti-Kaul R (2012) Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol 118:553–562

    Article  CAS  Google Scholar 

  68. Dishisha T, Ståhl Å, Lundmark S, Hatti-Kaul R (2013) An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresour Technol 135:504–512

    Article  CAS  Google Scholar 

  69. Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced byproduct formation in the fermentation of Anaerobiospirillum succiniproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48

    Article  CAS  Google Scholar 

  70. Vlysidis A, Binns M, Webb C, Theodoropoulos C (2011) Glycerol utilization for the production of chemicals: conversion to succinic acid, a combined experimental and computational study. Biochem Eng J 58–59:1–11

    Article  CAS  Google Scholar 

  71. Dharmadi Y, Muraka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  CAS  Google Scholar 

  72. Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245

    Article  CAS  Google Scholar 

  73. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev 8:447–460

    CAS  Google Scholar 

  74. Sato T, Atomi H (2010) Microbial inorganic carbon fixation. Encycl Life Sci. doi:10.1002/9780470015902.a0021900

    Google Scholar 

  75. Ampelli C, Perathoner S, Centi G (2015) CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Philos Trans R Soc Lond A Math Phys Eng Sci 373:20140177

    Article  CAS  Google Scholar 

  76. Hu P, Rismani-Yazdi H, Stephanopoulos G (2013) Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AIChE J 59:3176–3183

    Article  CAS  Google Scholar 

  77. Fernández-Naveira Á, Abubackar HN, Veiga MC, Kennes C (2016) Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Appl Microbiol Biotechnol 100:3361–3370

    Article  CAS  Google Scholar 

  78. Hyeon JE et al (2015) Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chem Commun 51:10202–10205

    Article  CAS  Google Scholar 

  79. Fuchs G, Länge S, Rude E, Schäfer S, Schauder R, Scholtz R, Stupperich E (1987) Autotrophic CO2 fixation in chemotrophic anaerobic bacteria. In: van Verseveld HW et al. (eds) Microbial growth on C1 compounds. Martinus Nijhoff Publishers, Dordrecht, pp 39–43

    Google Scholar 

  80. Hügler M, Menendez C, Schägger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexux auranticus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404–2410

    Article  CAS  Google Scholar 

  81. Teufel R, Kung JW, Kockelkorn D, Alber BE, Fuchs G (2009) 3-Hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J Bacteriol 191:4572–4581

    Article  CAS  Google Scholar 

  82. Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, Eisenreich W, Fuchs G (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic archaeum Ignicoccus hospitalis. Proc Natl Acad Sci U S A 105:7851–7856

    Article  CAS  Google Scholar 

  83. Van de Graaf AA, Mulder A, de Bruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    Google Scholar 

  84. Hu BL, Shen LD, Xu XY, Zheng P (2011) Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc Trans 39:1611–1616

    Article  CAS  Google Scholar 

  85. Van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiol 142:2187–2196

    Article  Google Scholar 

  86. Jetten MSM, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M (2001) Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Curr Opin Biotechnol 12:283–288

    Article  CAS  Google Scholar 

  87. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences – an application survey. Water Res 55:292–303

    Article  CAS  Google Scholar 

  88. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596

    Article  CAS  Google Scholar 

  89. Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250

    CAS  Google Scholar 

  90. De Luca G, de Philip P, Dermoun Z, Rousset M, Vermeglio A (2001) Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol 67:4583–4587

    Article  Google Scholar 

  91. Goulhen F, Gloter A, Guyot F, Bruschi M (2006) Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interaction studies. Appl Microbiol Biotechnol 71:892–897

    Article  CAS  Google Scholar 

  92. Lovley DR, Phillips EJ (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–738

    CAS  Google Scholar 

  93. Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol 113:41–53

    Article  CAS  Google Scholar 

  94. Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  Google Scholar 

  95. Shen Y, Buick R (2004) The antiquity of microbial sulphate reduction. Earth Sci Rev 64:243–272

    Article  CAS  Google Scholar 

  96. Mohan SV, Rao NC, Prasad KK, Sarma PN (2005) Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochem 40:2849–2857

    Article  CAS  Google Scholar 

  97. Cohen RRH (2006) Use of microbes for cost reduction for metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157

    Article  Google Scholar 

  98. Kolmert A, Johnson DB (2001) Remediation of acidic wastewaters using immobilized, acidophilic sulphate-reducing bacteria. J Chem Technol Biotechnol 76:836–843

    Article  CAS  Google Scholar 

  99. Gadd GM, White C (1993) Microbial treatment of metal pollution – a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  100. Kieu HTQ, Müller E, Horn H (2011) Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res 45:3863–3870

    Article  CAS  Google Scholar 

  101. Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66:3083–3087

    Article  CAS  Google Scholar 

  102. Baskaran V, Nemati M (2006) Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir. Biochem Eng J 31:148–159

    Google Scholar 

  103. Sahinkya E (2009) Biotreatment of zinc-containing wastewater in sulfidogenic CSTR: performance and artificial neural network (ANN) modeling studies. J Hazard Mater 164:105–113

    Article  CAS  Google Scholar 

  104. Goncalves MMM, da Costa ACA, Leite SGF, Sant´Anna GL (2007) Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere 69:1815–1820

    Google Scholar 

  105. Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37:3379–3389

    Article  CAS  Google Scholar 

  106. Lenz M, Hullebusch EDV, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194

    Article  CAS  Google Scholar 

  107. Kaksonen AH, Vanhanen MLR, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized bed treatment of acidic wastewater. Water Res 37:255–266

    Article  CAS  Google Scholar 

  108. Bartzas G, Komnitsas K, Paspaliaris L (2006) Laboratory evaluation of Fe0 barriers to treat acidic leachates. Mineral Eng 19:505–514

    Article  CAS  Google Scholar 

  109. Pott B-M, Mattiasson B (2004) Separation of heavy metals from water solutions in lab scale. Biotechnol Lett 26:451–456

    Article  CAS  Google Scholar 

  110. White C, Sharman AK, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575

    Article  CAS  Google Scholar 

  111. Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotechnol 7:287–294

    Article  CAS  Google Scholar 

  112. Khanal SK (2008) Overview of anaerobic technology. In: Khanal SK (ed) Anaerobic biotechnology for bioenergy production. Principles and applications. Wiley-Blackwell, Arnes, pp 1–28

    Google Scholar 

  113. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  Google Scholar 

  114. Bagi Z, Ács N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G, Kovács KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482

    Article  CAS  Google Scholar 

  115. Liu J, Olsson G, Mattiasson B (2006) Extremum-seeking with variable gain control for intensifying biogas production in anaerobic fermentation. Water Sci Technol 53:35–44

    Article  CAS  Google Scholar 

  116. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Ann Rev Microbiol 58:43–73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Swedish Research Council for financial support, and to Dr. Sang-Hyun Pyo for help with some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Hatti-Kaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hatti-Kaul, R., Mattiasson, B. (2016). Anaerobes in Industrial- and Environmental Biotechnology. In: Hatti-Kaul, R., Mamo, G., Mattiasson, B. (eds) Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 156. Springer, Cham. https://doi.org/10.1007/10_2016_10

Download citation

Publish with us

Policies and ethics