Skip to main content

Eco-Taxonomic Insights into Actinomycete Symbionts of Termites for Discovery of Novel Bioactive Compounds

  • Chapter
  • First Online:
Book cover Biotechnological Applications of Biodiversity

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 147))

Abstract

Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in “omics” sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the “omics” science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht/Norwell

    Google Scholar 

  2. Baker R, Walmsley S (1982) Soldier defense secretions of the South American termites Cortaritermes Silvestrii Nasutitermes SP N.D. and Nasutitermes Kemneri. Tetrahedron 38(13):1899–1910

    CAS  Google Scholar 

  3. Balachander M, Remadevi OK, Sasidharan TO (2013) Dissemination of Metarhizium anisopliae infection among the population of Odontotermes obesus (Isoptera: Termitidae) by augmenting the fungal conidia with attractants. J Asia-Pacific Entomol 16(3):199–208

    Google Scholar 

  4. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Nat Acad Sci USA 107:18933–18938

    CAS  Google Scholar 

  5. Bi SF, Li F, Song YC, Tan RX, Ge HM (2011) New acrylamide and oxazolidin derivatives from a termite-associated Streptomyces sp. Nat Prod Commun 6(3):353–355

    CAS  Google Scholar 

  6. Bode HB (2009) Insects: true pioneers in anti-infective therapy and what we can learn from them. Angew Chem Int Ed 48(35):6394–6396

    CAS  Google Scholar 

  7. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 209–231

    Google Scholar 

  8. Brune A, Ohkuma M (2010) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  9. Bugg TDH, Ahmed M, Hardiman EM, Singh R (2010) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400

    Google Scholar 

  10. Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R (2009) Targeting an antimicrobial effector function in insect immunity as a pest control strategy. PNAS 106(31):12652–12657

    CAS  Google Scholar 

  11. Bulmer MS, Lay F, Hamilton C (2010) Adaptive evolution in subterranean termite antifungal peptides. Insect Mol Biol 19(5):669–674

    CAS  Google Scholar 

  12. Carr G, Poulsen M, Klassen JL, Hou Y, Wyche TP, Bugni TS, Currie CR, Clardy J (2012) Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of Vinylamycin. Org Lett 14(11):2822–2825

    CAS  Google Scholar 

  13. Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392:558–559

    CAS  Google Scholar 

  14. Chouvenc T, Su N-Y, Elliott ML (2008) Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. J Econ Entomol 101:885–893

    CAS  Google Scholar 

  15. Citron CA, Gleitzmann J, Laurenzano G, Pukall R, Dickschat JS (2012) Terpenoids are widespread in actinomycetes: a correlation of secondary metabolism and genome data. ChemBioChem 13(2):202–214

    CAS  Google Scholar 

  16. Costa PS, Oliveira PL, Chartone-Souza E, Nascimento AMA (2012) Phylogenetic diversity of prokaryotes associated with the mandibulate nasute termite Cornitermes cumulans and its mound. Biol Fertil Soils 49:567–574

    Google Scholar 

  17. Costa-Leonardo AM, Casarin FE, Lima JT (2009) Chemical communication in Isoptera. Neotrop Entomol 38(1):1–6

    Google Scholar 

  18. Costa-Leonardo AM, Laranjo LT, Janei V, Haifig I (2013) The fat body of termites: functions and stored materials. J Insect Physiol 59(6):577–587

    CAS  Google Scholar 

  19. Crawford JM, Clardy J (2011) Bacterial symbionts and natural products. Chem Commun 47(27):7559–7566 (Camb)

    CAS  Google Scholar 

  20. Crespi BJ (1994) Three conditions for the evolution of eusociality: are they sufficient? Insectes Soc 41:395–400

    Google Scholar 

  21. Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12(3):438–446

    Google Scholar 

  22. de la Cruz MN, Junior HM, Oliveira DF, Costa-Lotufo LV, Ferreira AG, Alviano DS, Rezende CM (2013) Chemical composition and biological activities of soldiers of the Brazilian termite species, Nasutitermes macrocephalus (Isoptera: Natutitermitinae). Nat Prod Commun 8(1):69–74

    Google Scholar 

  23. Dillon RJ, Charnley AK (1988) Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust: characterisation of antifungal toxins. Can J Microbiol 34:1075–1082

    CAS  Google Scholar 

  24. Dillon RJ, Charnley AK (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509

    CAS  Google Scholar 

  25. Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298

    Google Scholar 

  26. Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82(3):85–102

    Google Scholar 

  27. Dunn AK, Handelsman J (2002) Toward an understanding of microbial communities through analysis of communication networks. Antonie Van Leeuwenhoek 81:565–574

    CAS  Google Scholar 

  28. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735

    CAS  Google Scholar 

  29. Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73(16):5199–5208

    CAS  Google Scholar 

  30. Fayad K, Simao-Beaunoir AM, Gauthier A, Leclerc C, Mamady H, Beaulieu C, Brzezinski R (2001) Purification and properties of a β-1, 6-glucanase from Streptomyces sp. EF-14, an actinomycete antagonistic to Phytophthora spp. Appl Microbiol Biotechnol 57(1–2):117–123

    CAS  Google Scholar 

  31. Feldhaar E (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Google Scholar 

  32. Fisher M, Miller D, Brewster C, Husseneder C, Dickerman A (2007) Diversity of gut bacteria of Reticulitermes flavipesas examined by 16S rRNA gene sequencing and amplified rDNA restriction analysis. Curr Microbiol 55:254–259

    CAS  Google Scholar 

  33. French JRJ, Ahmed (Shiday) BM (2010) The challenge of biomimetic design for carbon-neutral buildings using termite engineering. Insect Sci 17(2):154–162

    Google Scholar 

  34. Fuller CA (2007) Fungistatic activity of freshly killed termite, Nasutitermes acajutlae, soldiers in the Caribbean. J Insect Sci 7:1–8

    Google Scholar 

  35. Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13(6):935–938

    CAS  Google Scholar 

  36. Gil R, Latorre A, Moya A (2010) Evolution of prokaryote-animal symbioses from a genomics perspective. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea, vol 19., Microbiology MonographsSpringer, Berlin, pp 207–233

    Google Scholar 

  37. Gosalbes JM, Latorre A, Lamelas A, Moya A (2010) Genomics of intracellular symbionts in insects. Int J Med Microbiol 300:271–278

    CAS  Google Scholar 

  38. Grimaldi D (2001) Insect evolutionary history from Handlirsch to Hennig, and beyond. J Paleontol 75:1152–1160

    Google Scholar 

  39. Habbachi W, Bensafi H, Adjami Y, Ouakid ML, Farine JP, Everaerts C (2009) Spinosad affects chemical communication in the German cockroach, Blatella germanica (L). J Chem Ecol 35(12):1423–1426

    CAS  Google Scholar 

  40. Hamilton C, Bulmer MS (2012) Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Dev Comp Immunol 36:372–377

    CAS  Google Scholar 

  41. Hamilton C, Lay F, Bulmer MS (2011) Subterranean termite prophylactic secretions and external antifungal defenses. J Insect Physiol 57:1259–1266

    CAS  Google Scholar 

  42. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol R 68(4):669–685

    CAS  Google Scholar 

  43. Hayakawa M, Nonomura H (1987) Efficacy of artificial humic acid as a selective nutrient in HV agar used for the isolation of soil actinomycetes. J Ferment Technol 65(6):609–616

    CAS  Google Scholar 

  44. He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE 8(4):e61126. doi:10.1371/journal.pone

    CAS  Google Scholar 

  45. Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74:1145–1151

    CAS  Google Scholar 

  46. Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68(8):1311–1325

    CAS  Google Scholar 

  47. Hongoh Y, Ohkuma M (2008) Diversity and genome analysis of symbiotic microbiota in termite guts. J Environ Biotechnol 8(1):29–34

    Google Scholar 

  48. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    CAS  Google Scholar 

  49. Hongoh Y, Yuzawa H, Ohkuma M, Kudo T (2003) Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol Lett 221(2):299–304

    CAS  Google Scholar 

  50. Hongoh Y, Deevong PN, Inoue T, Moriya S, Trakulnaleamsai T, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and inter- specific comparisons of bacterial diversity and community structure support co-evolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599

    CAS  Google Scholar 

  51. Hongoh Y, Ekpornprasit L, Inoue T, Moryia S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15(2):505–516

    CAS  Google Scholar 

  52. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Nat Acad Sci USA 105:5555–5560

    CAS  Google Scholar 

  53. Hughes AL (2012) Evolution of the βGRP/GNBP/β-1, 3-glucanase family of insects. Immunogenetics 64(7):549–558

    CAS  Google Scholar 

  54. Hussain A, Li Y-F, Cheng Y, Liu Y, Chen C-C, Wen S-Y (2013) Immune-related transcriptome of Coptotermes formosanus Shiraki workers: the defense mechanism. PLoS ONE 8(7):e69543

    CAS  Google Scholar 

  55. Husseneder C (2010) Symbioses in subterranean termites: a review of insights from molecular studies. Environ Entomol 39(2):378–387

    CAS  Google Scholar 

  56. Husseneder C, Ho H-Y, Blackwell M (2010) Comparison of the bacterial symbiont composition of the formosan subterranean termite from its native and introduced range. Open Microbiol J 4:53–66

    CAS  Google Scholar 

  57. Ikeda H, Omura S (1997) Avermectin biosynthesis. Chem Rev 97(7):2591–2610

    CAS  Google Scholar 

  58. Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fert Soils 46(3):199–213

    CAS  Google Scholar 

  59. Jachymova J, Votrub J, Viden I, Rezenka T (2002) Identification of streptomyces odour spectrum. Folia Microbiol (Praha) 47(1):37–41

    CAS  Google Scholar 

  60. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17(12):529–535

    CAS  Google Scholar 

  61. Kikuchi T, Shibuya H, Jones JT (2005) Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochem J 389:117–125

    CAS  Google Scholar 

  62. Komatsu M, Uchiyama T, Omura S, Canec DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. PNAS 107(6):2646–2651

    CAS  Google Scholar 

  63. König H, Varma A (eds) (2006) Intestinal microorganisms of termites and other invertebrates. Springer, New York

    Google Scholar 

  64. König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, New York, pp 271–301

    Google Scholar 

  65. König H, Fröhlich J, Berchtold M, Wenze M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Dev Microbiol 6:125–156

    Google Scholar 

  66. Krasulová J, Hanus R, Kutalová K, Šobotník J, Sillam-Dussès D, Tichý M, Valterová I (2012) Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma. J Chem Ecol 38:557–565

    Google Scholar 

  67. Kumari R, Sachdev M, Sharma S, Prasad R, Giang PH, Garg AP, Varma A (2006) Microbiology of termite hill (mound) and soil. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, New York

    Google Scholar 

  68. Kurtböke DI (ed) (2003) Selective isolation of rare Actinomycetes. Queensland Complete Printing Services, Nambour, Queensland. ISBN 0-646-42910-8

    Google Scholar 

  69. Kurtböke DI (2009) Use of phage-battery to isolate industrially important rare actinomycetes. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science, New York, pp 119–149

    Google Scholar 

  70. Kurtböke DI (2011) Exploitation of phage battery in the search for bioactive actinomycetes. Appl Microbiol Biotechnol 89(4):931–937

    Google Scholar 

  71. Kurtböke DI (2012) A phage-guided route to discovery of bioactive rare actinomycetes. In: Kurtböke DI (ed) Bacteriophages. InTech, Rijeka, pp 237–256. ISBN 978-953-51-0272-4

    Google Scholar 

  72. Kurtböke DI (2012) Biodiscovery from rare actinomycetes: an eco-taxonomical perspective. Appl Microbiol Biotechnol 93(5):1843–1852

    Google Scholar 

  73. Kurtböke DI, French JRJ (2007) Use of phage battery to investigate the actinofloral layers of termite gut microflora. J Appl Microbiol 103:722–734

    Google Scholar 

  74. Kurtböke DI, French JRJ (2008) Actinobacterial resources from termite guts for regional bioindustries. Microbiol Aust 29(1):42–44

    Google Scholar 

  75. Lamberty M, Zachary D, Lanot, Bordereau C, Robert A, Hoffmann JA, Bulet P (2001) Insect immunity—constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276:4085–4092

    CAS  Google Scholar 

  76. Lefebvre T, Miambi E, Pando A, Diouf M, Rouland-Lefèvre C (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276

    Google Scholar 

  77. Le Roes-Hill M, Goodwin C, Burton S (2009) Phenoxazinone synthase: what’s in a name? Trends Biotechnol 27(4):248–258

    Google Scholar 

  78. Leroy PD, Sabri A, Verheggen FJ, Francis F, Thonart P, Haubruge E (2011) The semiochemically mediated interactions between bacteria and insects. Chemoecology. doi:10.1007/s00049-011-0074-6

    Google Scholar 

  79. Li ZQ, Liu BR, Zeng WH, Xiao WL, Li QJ, Zhong JH (2013) Character of cellulase activity in the guts of flagellate-free termites with different feeding habits. J Insect Sci 13:37

    CAS  Google Scholar 

  80. Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y, Zhou Z (2013) Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS ONE 8(7):e69184

    CAS  Google Scholar 

  81. Long Y-H, Xie L, Liu N, Yan X, Li M-H, Fan M-Z, Wang Q (2010) Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Sci 17:265–276

    CAS  Google Scholar 

  82. Margulis L, Fester R (1991) Symbioses as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA

    Google Scholar 

  83. Matsui T, Tokuda G, Shinzato N (2009) Termites as functional gene resources. Recent Pat Biotechnol 3:10–18

    CAS  Google Scholar 

  84. Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26

    Google Scholar 

  85. McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  86. Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insect Soc 53:339–344

    Google Scholar 

  87. Moran NA (2006) Symbioses. Curr Biol 16(20):R866–R871

    CAS  Google Scholar 

  88. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    CAS  Google Scholar 

  89. Motohashi K, Ueno R, Sue M, Furihata K, Matsumoto T, Dairi T, Omura S, Seto H (2008) Studies on terpenoids produced by actinomycetes: oxaloterpins A, B, C, D, and E, diterpenes from Streptomyces sp. KO-3988. J Nat Prod 70(11):1712–1717

    Google Scholar 

  90. Moya A, Pereto J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9:218–229

    CAS  Google Scholar 

  91. Mueller UG, Ishak H, Lee JC, Sen R, Gutell RR (2010) Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie Van Leeuwenhoek 98:195–212

    Google Scholar 

  92. Nakajima H, Hongoh Y, Usami R, Kudo T, Ohkuma M (2005) Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol Ecol 54(2):247–255

    CAS  Google Scholar 

  93. Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201

    Google Scholar 

  94. Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31(6):838–885

    CAS  Google Scholar 

  95. Nguyen KB, Smart GC Jr (1994) Neosteinernema longicurvicauda n. gen., n. sp. (Rhabditida: Steinernematidae), a parasite of the termite Reticuldermes flavipes (Koller). J Nematol 26(2):162

    CAS  Google Scholar 

  96. O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotech 22:552–558

    Google Scholar 

  97. Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbioses. Nat Chem Biol 5(6):391–393

    CAS  Google Scholar 

  98. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer Science + Business Media B.V, Dordrecht, pp 413–438

    Google Scholar 

  99. Palleroni NJ (1997) Prokaryotic diversity and the importance of culturing. A Van Leeuw 72:3–19

    CAS  Google Scholar 

  100. Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26(1):107–112

    CAS  Google Scholar 

  101. Prach L, Kirby J, Keasling JD, Alber T (2010) Diterpene production in Mycobacterium tuberculosis. FEBS J 277:3588–3595

    CAS  Google Scholar 

  102. Prestwich GD (1979) Chemical defense by termite soldiers. J Chem Ecol 5:459–480

    CAS  Google Scholar 

  103. Prestwich GD (1984) Defense mechanisms of termites. Annu Rev Entomol 29:201–232

    CAS  Google Scholar 

  104. Quennedey A (1984) Morphology and ultrastructure of termite defense glands. In: Hermann HR (ed) Defensive mechanisms in social insects. Praeger, New York, pp 151–200

    Google Scholar 

  105. Řezanka T, Libalova D, Votruba J, Viden I (1994) Identification of odorous compounds from Streptomyces avermitilis. Biotechnol Lett 16(1):75–78

    Google Scholar 

  106. Řezanka T, Sobotka M, Prell A, Sigler K (2007) Relationship between volatile odorous substances and production of Avermectins by Streptomyces avermitilis. Folia Microbiol 52(1):26–30

    Google Scholar 

  107. Rosengaus RB, Guldin MR, Traniello JFA (1998) Inhibitory effect of termite fecal pellets on fungal spore germination. J Chem Ecol 24:1697–1706

    CAS  Google Scholar 

  108. Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbioses. PNAS 108(2):10800–10807

    CAS  Google Scholar 

  109. Scherlach K, Graupner K, Hertweck C (2013) Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol 67:375–397

    CAS  Google Scholar 

  110. Schöller CEG, Gürtler H, Pedersen R, Molin S, Wilkins K (2002) Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621

    Google Scholar 

  111. Scheuring I, Yu DW (2012) How to assemble a beneficial microbiome in three easy steps. Ecol Lett 15:1300–1307

    Google Scholar 

  112. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024

    CAS  Google Scholar 

  113. Seipke RF, Kaltenpoth M, Hutchings MI (2011) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36(4):862–876

    Google Scholar 

  114. Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Nat Acad Sci USA 106:17805–17810

    CAS  Google Scholar 

  115. Shi W, Syrenne R, Sun J-Z, Yuan JS (2010) Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci 17:199–219

    CAS  Google Scholar 

  116. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71(4):906–915

    CAS  Google Scholar 

  117. Shirai M, Okuda M, Motohashi K, Imoto M, Furihata K, Matsuo Y, Katsuta A, Shizuri Y, Seto H (2010) Terpenoids produced by actinomycetes: isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J Antibiot 63(5):245–250

    CAS  Google Scholar 

  118. Siderhurst MS, James DM, Blunt TD, Bjostad LB (2005) Endosymbiont biosynthesis of norharmane in Reticulitermes termites (Isoptera: Rhinotermitidae). Sociobiology 45(3):687–705

    Google Scholar 

  119. Siderhurst MS, James DM, Blunt TD, Bjostad LB (2005) Antimicrobial activity of the termite (Isoptera) alkaloid norharmane against the entomopathogenic fungus Metarhizium anisopliae. Sociobiology 46(3):563–577

    Google Scholar 

  120. Sinma K, Ishida Y, Tamura T, Kitpreechavanich V, Tokuyama S (2011) Saccharopolyspora pathumthaniensis sp. nov., a novel actinomycetes isolated from termite guts (Speculitermes sp.). J Gen Appl Microbiol 57(2):93–100

    CAS  Google Scholar 

  121. Skujins JJ, Potgieter HJ, Alexander M (1965) Dissolution of fungal cell walls by a streptomycete chitinase and β-(1→ 3) glucanase. Arch Biochem Biophys 111(2):358–364

    CAS  Google Scholar 

  122. Šobotník J, Jirošová A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56(9):1012–1021

    Google Scholar 

  123. Smanski MJ, Peterson RM, Huang SX, Shen B (2012) Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 16(1):132–141

    CAS  Google Scholar 

  124. Takagi H, Motohashi K, Miyamoto T, Shin-ya K, Furihata K, Seto H (2005) Studies on terpenoids produced by actinomycetes isolation and structural elucidation of antioxidative agents, Naphterpins B and C. J Antibiot 58(4):275–278

    CAS  Google Scholar 

  125. Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25. doi:10.1186/1754-6834-2-25

    Google Scholar 

  126. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54

    Google Scholar 

  127. Tiunova NA, Kobzeva N, Zaĭkina IV, Eliakova LA, Nazarova NI (1983) 1, 3-Beta-glucanases of actinomycetes. Mikrobiologiia 52(4):586

    CAS  Google Scholar 

  128. Valterová I, Křeček J, Vrkoč J (1989) Intraspecific variation in the defense secretions of Nasutitermes ephratae soldiers and the biological activity of some of their components. Biochem Syst Ecol 17(4):327–332

    Google Scholar 

  129. Vernekar JV, Ghatge MS, Deshpande VV (1999) Alkaline protease inhibitor: a novel class of antifungal proteins against phytopathogenic fungi. BiochemBiophys Res Commun 262(3):702–707

    CAS  Google Scholar 

  130. Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M (2012) Exploring the potential for symbionts in fungus-growing termites. Microb Ecol 63:975–985

    CAS  Google Scholar 

  131. Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67(8):1797–1801

    CAS  Google Scholar 

  132. Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L (2002) Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc Nat Acad Sci USA 99:1410–1413

    CAS  Google Scholar 

  133. Wilkins K, Schöller C (2009) Volatile organic metabolites from selected Streptomyces strains. Actinomycetologica 23:27–33

    CAS  Google Scholar 

  134. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro H, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbioses insights through metagenomic analysis of a microbial consortium. Nature 443:950–955

    CAS  Google Scholar 

  135. Wyatt TD (2003) Pheromones and animal behavior: communication by smell and taste. Cambridge University Press, Cambridge

    Google Scholar 

  136. Xu P, Shi M, Lai R, Chen XX (2012) Differences in numbers of termicins expressed in two termite species affected by fungal contamination of their environments. Genet Mol Res 11(3):2247–2257

    CAS  Google Scholar 

  137. Yomosa K, Hirota A, Sakai H, Isogai A (1987) Isolation of harman and norharman from Nocardia sp. and their inhibitory activity against plant seedlings. Agric Biol Chem Tokyo 51(3):921–922

    CAS  Google Scholar 

  138. Zhao C, Rickards RW, Trowell SC (2004) Antibiotics from Australian terrestrial invertebrates Part 1: antibacterial trinervitadienes from the termite Nasutitermes triodiae. Tetrahedron 60:10753–10759

    CAS  Google Scholar 

  139. Zhu Y, Li J, Liu H, Yang H, Xin S, Zhao F, Zhang X, Tian Y, Lu X (2012) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Macrotermes barneyi. Afr J Microbiol Res 6(9):2071–2078

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Manfred Rohde (GBF, Germany) for the electron micrographs of the termite symbiotic actinomycete.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. İpek Kurtböke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurtböke, D.İ., French, J.R.J., Hayes, R.A., Quinn, R.J. (2014). Eco-Taxonomic Insights into Actinomycete Symbionts of Termites for Discovery of Novel Bioactive Compounds. In: Mukherjee, J. (eds) Biotechnological Applications of Biodiversity. Advances in Biochemical Engineering/Biotechnology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2014_270

Download citation

Publish with us

Policies and ethics