Skip to main content

Cell-Free Biosystems for Biomanufacturing

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 131))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang Y-HP, Huang W-D (2012) Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. Trends Biotechnol 30:301–306

    Article  CAS  Google Scholar 

  2. Thiel KA (2004) Biomanufacturing, from bust to boom…to bubble? Nat Biotechnol 22:1365–1372

    Article  CAS  Google Scholar 

  3. Zhang Y-HP, Myung S, You C, Zhu ZG, Rollin J (2011) Toward low-cost biomanufacturing through cell-free synthetic biology: bottom-up design. J Mater Chem 21:18877–18886

    Article  CAS  Google Scholar 

  4. Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677

    CAS  Google Scholar 

  5. Vasic-Racki D (2006) History of industrial biotransformations—Dreams and realities. In: Liese A, Seebald S, Wandrey C (eds) Industrial biotransformations. Wiley-VCH, Weinheim, pp 1–37

    Google Scholar 

  6. Lopez-Gallego F, Schmidt-Dannert C (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14:174–183

    Article  CAS  Google Scholar 

  7. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262

    Article  CAS  Google Scholar 

  8. Santacoloma PA, Sin Gr, Gernaey KV, Woodley JM (2010) Multienzyme-catalyzed processes: next-generation biocatalysis. Org Proc Res Dev 15:203–212

    Google Scholar 

  9. Schoffelen S, van Hest JCM (2012) Multi-enzyme systems: bringing enzymes together in vitro. Soft Matter 8:1736–1746

    Article  CAS  Google Scholar 

  10. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156

    Article  CAS  Google Scholar 

  11. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261–269

    Article  CAS  Google Scholar 

  12. Bujara M, Schümperli M, Billerbeck S, Heinemann M, Panke S (2010) Exploiting cell-free systems: Implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376–389

    CAS  Google Scholar 

  13. Zhang YHP, You C, Chen H, Feng R (2012) Surpassing photosynthesis: High-efficiency and scalable CO2 utilization through artificial photosynthesis. In ACS Symposium Series . Recent Advances in Post-Combustion CO2 Capture Chemistry. American Chemical Society, pp275–292

    Google Scholar 

  14. Zhang Y-HP (2011) Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB). ACS Catal 1:998–1009

    Article  CAS  Google Scholar 

  15. Huang WD, Zhang Y-HP (2011) Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy Environ Sci 4:784–792

    Article  CAS  Google Scholar 

  16. Maeda T, Sanchez-Torres V, Wood TK (2012) Hydrogen production by recombinant Escherichia coli strains. Microb Biotechnol. doi: 10.1111/j.1751-7915.2011.00282.x

  17. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang Y-HP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149–152

    Article  CAS  Google Scholar 

  18. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  19. Gellett W, Schumacher J, Kesmez M, Le D, Minteer SD (2010) High current density air-breathing laccase biocathode. J Electrochem Soc 157:B557–B562

    Article  CAS  Google Scholar 

  20. Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370

    Article  CAS  Google Scholar 

  21. Zhang Y-HP (2010) Renewable carbohydrates are a potential high density hydrogen carrier. Int J Hydrogen Energy 35:10334–10342

    Article  CAS  Google Scholar 

  22. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194

    Google Scholar 

  23. Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, Philipp A, Haack M, Rühmann B, Kettling U, et al (2012) Cell-free metabolic engineering—production of chemicals via minimized reaction cascades. ChemSusChem. doi: 10.1002/cssc.201200365

  24. Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Article  CAS  Google Scholar 

  25. Zhang Y-HP, Sun J-B, Zhong J–J (2010) Biofuel production by in vitro synthetic pathway transformation. Curr Opin Biotechnol 21:663–669

    Article  CAS  Google Scholar 

  26. Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456

    Article  CAS  Google Scholar 

  27. Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  CAS  Google Scholar 

  28. Swartz JR (2011) Transforming biochemical engineering with cell-free biology. AIChE J 58:5–13

    Article  CAS  Google Scholar 

  29. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  CAS  Google Scholar 

  30. Buchner E (1897) Alkoholische Gärung ohne Hefezellen (Vorläufige Mitteilung). Berichte der Deutschen Chemischen Gesellschaft 30:117–124

    Article  CAS  Google Scholar 

  31. Harden A, Young WJ (1907) The alcoholic ferment of yeast-juice. Proc Roy Soc London 77B:405–422

    Google Scholar 

  32. Warburg OH (1926) Über den Stoffwechsel der Tumoren. Springer, Berlin

    Google Scholar 

  33. Cori CF (1931) Mammalian carbohydrate metabolism. Physiol Rev 11:143–275

    CAS  Google Scholar 

  34. Cori GT, Cori CF (1936) The formation of hexosephosphate esters in frog muscle. J Biol Chem 116:119–128

    CAS  Google Scholar 

  35. Krebs HA, Eggleston LV (1944) Metabolism of acetoacetic acid in animal tissues. Nature 154:209–210

    Article  CAS  Google Scholar 

  36. Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480

    Article  CAS  Google Scholar 

  37. Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    Article  CAS  Google Scholar 

  38. Michels P, Rosazza J (2009) The evolution of microbial transformations for industrial applications. SIM News 2009:36–52

    Google Scholar 

  39. Demain AL (2004) Pickles, pectin, and penicillin. Annu Rev Microbiol 58:1–42

    Article  CAS  Google Scholar 

  40. Ye X, Zhang C, Zhang YHP (2012) Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Mol BioSyst 8:1815–1823

    Article  CAS  Google Scholar 

  41. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  Google Scholar 

  42. Wang Y, Zhang Y-HP (2009) Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration. Microb Cell Fact 8:30

    Article  CAS  Google Scholar 

  43. Tufvesson Pr, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Proc Res Dev 15:266–274

    Google Scholar 

  44. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  Google Scholar 

  45. Daines AM, Maltman BA, Flitsch SL (2004) Synthesis and modifications of carbohydrates, using biotransformations. Curr Opin Chem Biol 8:106–113

    Article  CAS  Google Scholar 

  46. Chi Y, Scroggins ST, Frechet JMJ (2008) One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J Am Chem Soc 130:6322–6323

    Article  CAS  Google Scholar 

  47. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  48. Liao HH, Zhang XZ, Rollin JA, Zhang Y-HP (2011) A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnol J 6:1409–1418

    Article  CAS  Google Scholar 

  49. Wildeman SMAD, Sonke T, Schoemaker HE, May O (2007) Biocatalytic reductions: from lab curiosity to “first choice”. Acc Chem Res 40:1260–1266

    Article  CAS  Google Scholar 

  50. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng Biotechnol 92:225–260

    CAS  Google Scholar 

  51. Bozic M, Pricelius S, Guebitz GM, Kokol V (2010) Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration. Appl Microbiol Biotechnol 85:563–571

    Article  CAS  Google Scholar 

  52. Xu Z, Jing K, Liu Y, Cen P (2007) High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 34:83–90

    Article  CAS  Google Scholar 

  53. Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343–348

    Article  CAS  Google Scholar 

  54. Johannes TW, Woodyer RD, Zhao H (2007) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18–26

    Article  CAS  Google Scholar 

  55. Schoevaart R, van Rantwijk F, Sheldon RA (2000) A four-step enzymatic cascade for the one-pot synthesis of non-natural carbohydrates from glycerol. J Org Chem 65:6940–6943

    Article  CAS  Google Scholar 

  56. Zhang J, Shao J, Kowal P, Wang PG (2005) Enzymatic Synthesis of Oligosaccharides. Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim

    Google Scholar 

  57. Fessner W-D, Helaine V (2001) Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes. Curr Opin Biotechnol 12:574–586

    Article  CAS  Google Scholar 

  58. Endo T, Koizumi S (2000) Large-scale production of oligosaccharides using engineered bacteria. Curr Opin Struct Biol 10:536–541

    Article  CAS  Google Scholar 

  59. Wang Y, Zhang Y-HP (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58

    Article  CAS  Google Scholar 

  60. Calhoun KA, Swartz JR (2005) An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol Prog 21:1146–1153

    Article  CAS  Google Scholar 

  61. Hold C, Panke S (2009) Towards the engineering of in vitro systems. J Royal Soc Interface 6:S507–S521

    Article  CAS  Google Scholar 

  62. Panke S, Held M, Wubbolts M (2004) Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotechnol 15:272–279

    Article  CAS  Google Scholar 

  63. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de Novo purine nucleotide synthesis. ACS Chem Biol 3:499–511

    Article  CAS  Google Scholar 

  64. Schultheisz HL, Szymczyna BR, Williamson JR (2009) Enzymatic synthesis and structural characterization of 13C, 15 N-poly(ADP-ribose). J Am Chem Soc 131:14571–14578

    Article  CAS  Google Scholar 

  65. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  Google Scholar 

  66. Zhang Y-HP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Proc Biochem 46:2091–2110

    Article  CAS  Google Scholar 

  67. Zhang Y-HP (2011) Hydrogen production from carbohydrates: a mini-review. ACS Symp Ser 1067:203–216

    Article  CAS  Google Scholar 

  68. Adams MWW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282:1842–1843

    Article  CAS  Google Scholar 

  69. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  Google Scholar 

  70. Thauer K, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  71. The Royal Society of the UK (2007) Synthetic biology: call for views. http://royalsociety.org/page.asp?changes=0&latest=1&id=6731

  72. Ye X, Rollin J, Zhang Y-HP (2010) Thermophilic α-glucan phosphorylase from Clostridium thermocellum: cloning, Characterization and enhanced thermostability. J Mol Cat B Enzym 65:110–116

    Article  CAS  Google Scholar 

  73. Wang Y, Zhang Y-HP (2010) A highly active phosphoglucomutase from Clostridium thermocellum: Cloning, purification, characterization, and enhanced thermostability. J Appl Microbiol 108:39–46

    Article  CAS  Google Scholar 

  74. Myung S, Wang YR, Zhang Y-HP (2010) Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium Thermotoga maritima: Characterization, metabolite stability and its implications. Proc Biochem 45:1882–1887

    Article  CAS  Google Scholar 

  75. Sun FF, Zhang XZ, Myung S, Zhang Y-HP (2012) Thermophilic Thermotoga maritima ribose-5-phosphate isomerase RpiB: Optimized heat treatment purification and basic characterization. Protein Expr Purif 82:302–307

    Article  CAS  Google Scholar 

  76. Sun J, Hopkins RC, Jenney FE, McTernan PM, Adams MWW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526

    Article  CAS  Google Scholar 

  77. Zhang Y-HP, Mielenz JR (2011) Renewable hydrogen carrier—carbohydrate: constructing the carbon-neutral carbohydrate economy. Energies 4:254–275

    Article  Google Scholar 

  78. Scopes RK (1993) Protein purification: principles and practice, 3rd edn. Springer, New York

    Google Scholar 

  79. Hong J, Wang Y, Ye X, Zhang Y-HP (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 1194:150–154

    Article  CAS  Google Scholar 

  80. Hong J, Ye X, Wang Y, Zhang Y-HP (2008) Bioseparation of recombinant cellulose binding module-protein by affinity adsorption on an ultra-high-capacity cellulosic adsorbent. Anal Chim Acta 621:193–199

    Article  CAS  Google Scholar 

  81. Liao HH, Myung S, Zhang Y-HP (2012) One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl. Microbiol Biotechnol 93:1109–1117

    Article  CAS  Google Scholar 

  82. Myung S, Zhang X-Z, Zhang Y-HP (2011) Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Prog 27:969–975

    Article  CAS  Google Scholar 

  83. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  Google Scholar 

  84. Welch P, Scopes RK (1985) Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol 2:257–273

    Article  CAS  Google Scholar 

  85. Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577–589

    Article  CAS  Google Scholar 

  86. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  87. Moradian A, Benner SA (1992) A biomimetic biotechnological process for converting starch to fructose: thermodynamic and evolutionary considerations in applied enzymology. J Am Chem Soc 114:6980–6987

    Article  CAS  Google Scholar 

  88. Petitou M, van Boeckel CAA (2004) A synthetic antithrombin iii binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed 43:3118–3133

    Article  CAS  Google Scholar 

  89. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501

    Article  CAS  Google Scholar 

  90. Moehlenbrock M, Minteer S (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196

    Article  CAS  Google Scholar 

  91. Zhang Y-HP, Xu J-H, Zhong JJ (2012) A new high-energy density hydrogen carrier - carbohydrate - might be better than methanol. Int. J. Energy Res. Epub, doi: 10.1002/er.2897

  92. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 18:228–234

    Article  CAS  Google Scholar 

  93. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

    Article  CAS  Google Scholar 

  94. Zhu ZG, Sun F, Zhang X, Zhang Y-HP (2012) Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosens Bioelectron 36:110–115

    Article  CAS  Google Scholar 

  95. Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 443:155–161

    Article  CAS  Google Scholar 

  96. Sokic-Lazic D, Minteer SD (2008) Citric acid cycle biomimic on a carbon electrode. Biosens Bioelectron 24:939–944

    Article  CAS  Google Scholar 

  97. Arechederra RL, Treu BL, Minteer SD (2007) Development of glycerol/O-2 biofuel cell. J Power Sources 173:156–161

    Article  CAS  Google Scholar 

  98. Sokic-Lazic D, Minteer SD (2009) Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem Solid-State Lett 12:F26–F28

    Article  CAS  Google Scholar 

  99. Moehlenbrock MJ, Toby TK, Waheed A, Minteer SD (2010) Metabolon catalyzed pyruvate/air biofuel cell. J Am Chem Soc 132:6288–6289

    Article  CAS  Google Scholar 

  100. Xu S, Minteer SD (2011) Enzymatic biofuel cell for oxidation of glucose to CO2. ACS Catal 1:91–94

    Google Scholar 

  101. Marsh JJ, Lebherz HG (1992) Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci 17:110–113

    Article  CAS  Google Scholar 

  102. Hibbert EG, Senussi T, Costelloe SJ, Lei W, Smith MEB, Ward JM, Hailes HC, Dalby PA (2007) Directed evolution of transketolase activity on non-phosphorylated substrates. J Biotechnol 131:425–432

    Article  CAS  Google Scholar 

  103. Boyer ME, Stapleton JA, Kuchenreuther JM, Wang C-w, Swartz JR (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99:59–67

    Google Scholar 

  104. Kim D-M, Swartz JR (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol Bioeng 85:122–129

    Article  CAS  Google Scholar 

  105. Kanter G, Yang J, Voloshin A, Levy S, Swartz JR, Levy R (2007) Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 109:3393–3399

    Article  CAS  Google Scholar 

  106. Bundy BC, Franciszkowicz MJ, Swartz JR (2008) Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng 100:28–37

    Article  CAS  Google Scholar 

  107. Lee K-H, Kwon Y-C, Yoo SJ, Kim D-M (2010) Ribosomal synthesis and in situ isolation of peptide molecules in a cell-free translation system. Protein Expr Purif 71:16–20

    Article  CAS  Google Scholar 

  108. Beveridge WIB (1960) The art of scientific investigation. Vintage, New York

    Google Scholar 

  109. Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Glob Change Biol 4:679–685

    Article  Google Scholar 

  110. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  Google Scholar 

  111. Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23:89–110

    Article  CAS  Google Scholar 

  112. You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51:8787–8790

    Article  CAS  Google Scholar 

  113. Huang SY, Zhang Y-HP, Zhong JJ (2012) A thermostable recombinant transaldolase with high activity over a broad pH range. Appl Microbiol Biotechnol 93:2403–2410

    Article  CAS  Google Scholar 

  114. Zhang Y-HP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715–725

    Article  CAS  Google Scholar 

  115. Bayer EA, Morag E, Lamed R (1994) The cellulosome–a treasure-trove for biotechnology. Trends Biotechnol 12:379–386

    Article  CAS  Google Scholar 

  116. You C, Zhang X-Z, Sathitsuksanoh N, Lynd LR, Zhang Y-HP (2012) Enhanced microbial cellulose utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78:1437–1444

    Article  CAS  Google Scholar 

  117. You C, Zhang X-Z, Zhang YHP (2012) Mini-scaffoldin enhanced mini-cellulosome hydrolysis performance on low-accessibility cellulose (Avicel) more than on high-accessibility amorphous cellulose. Biochem Eng J 63:57–65

    Article  CAS  Google Scholar 

  118. Moraïs S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA (2011) Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio 2 e00233-11

    Google Scholar 

  119. Rogers TA, Bommarius AS (2010) Utilizing simple biochemical measurements to predict lifetime output of biocatalysts in continuous isothermal processes. Chem Eng Sci 65:2118–2124

    Article  CAS  Google Scholar 

  120. Cao L, Langen Lv, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Google Scholar 

  121. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  CAS  Google Scholar 

  122. Hartmann M, Jung D (2010) Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J Mater Chem 20:844–857

    Article  CAS  Google Scholar 

  123. Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3:54–59

    Article  CAS  Google Scholar 

  124. Eijsink VG, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  CAS  Google Scholar 

  125. Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    Article  CAS  Google Scholar 

  126. Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E (1999) Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase. Biochemistry 38:11440–11447

    Article  CAS  Google Scholar 

  127. Yaoi T, Miyazaki K, Oshima T, Komukai Y, Go M (1996) Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement. J Biochem 119:1014–1018

    Article  CAS  Google Scholar 

  128. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352

    Article  CAS  Google Scholar 

  129. Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J (2003) Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. J Biol Chem 278:40573–40580

    Article  CAS  Google Scholar 

  130. Döhr O, Paine MJI, Friedberg T, Roberts GCK, Wolf CR (2001) Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci USA 98:81–86

    Article  Google Scholar 

  131. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng Des Sel 15:131–140

    Article  CAS  Google Scholar 

  132. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Optimizing an artificial metabolic pathway: Engineering the cofactor specificity of Corynebacterium 2,5-Diketo-D-gluconic acid reductase for use in vitamin C biosynthesis. Biochemistry 41:6226–6236

    Article  CAS  Google Scholar 

  133. Bocanegra JA, Scrutton NS, Perham RN (1993) Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry 32:2737–2740

    Article  CAS  Google Scholar 

  134. Mittl PRE, Berry A, Scrutton NS, Perham RN, Schulz GE (1993) Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. J Mol Biol 231:191–195

    Article  CAS  Google Scholar 

  135. Steen IH, Lien T, Madsen MS, Birkeland N-K (2002) Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Arch Microbiol 178:297–300

    Article  CAS  Google Scholar 

  136. Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349

    Article  CAS  Google Scholar 

  137. Glykys DJ, Banta S (2009) Metabolic control analysis of an enzymatic biofuel cell. Biotechnol Bioeng 102:1624–1635

    Article  CAS  Google Scholar 

  138. Woodyer RD, van der Donk WA, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614

    Article  CAS  Google Scholar 

  139. Wiegert T, Sahm H, Sprenger GA (1997) The substitution of a single amino acid residue (Ser-116 → Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. J Biol Chem 272:13126–13133

    Article  CAS  Google Scholar 

  140. Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund M-F, Bertau M (2010) Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-Diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int J Mol Sci 11:1735–1758

    Article  CAS  Google Scholar 

  141. Sanli G, Banta S, Anderson S, Blaber M (2004) Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase. Protein Eng 13:504–512

    CAS  Google Scholar 

  142. Campbell E, Wheeldon IR, Banta S (2010) Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol Bioeng 107:763–774

    Article  CAS  Google Scholar 

  143. Burton SJ, Vivian Stead C, Ansell RJ, Lowe CR (1996) An artificial redox coenzyme based on a triazine dye template. Enzym Microb Technol 18:570–580

    Google Scholar 

  144. Ansell RJ, Dilmaghanian S, Stead CV, Lowe CR (1997) Synthesis and properties of new coenzyme mimics based on the artificial coenzyme Blue N-3. Enzym Microb Technol 21:327–334

    Article  CAS  Google Scholar 

  145. Ansell RJ, Small DAP, Lowe CR (1997) Characterisation of the artificial coenzyme CL4. J Mol Catal B Enzym 3:239–252

    Article  CAS  Google Scholar 

  146. Ansell RJ, Lowe CR (1999) Artificial redox coenzymes: biomimetic analogues of NAD+. Appl Microbiol Biotechnol 51:703–710

    Article  CAS  Google Scholar 

  147. Ansell RJ, Small DAP, Lowe CR (1999) Synthesis and properties of new coenzyme mimics based on the artificial coenzyme CL4. J Mol Recognit 12:45–56

    Article  CAS  Google Scholar 

  148. Lo HC, Leiva C, Buriez O, Kerr JB, Olmstead MM, Fish RH (2001) Bioorganometallic chemistry. 13. regioselective reduction of NAD+ models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5′-methyl phosphate, with in situ generated [Cp*Rh(Bpy)H]+: structure–activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg Chem 40:6705–6716

    Article  CAS  Google Scholar 

  149. Lo HC, Fish RH (2002) Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Ed 41:478–481

    Article  CAS  Google Scholar 

  150. Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689:4783–4790

    Article  CAS  Google Scholar 

  151. Ryan JD, Fish RH, Clark DS (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. ChemBioChem 9:2579–2582

    Article  CAS  Google Scholar 

  152. Nazor J, Schwaneberg U (2006) Laboratory evolution of P450 BM-3 for mediated electron transfer. ChemBioChem 7:638–644

    Article  CAS  Google Scholar 

  153. Nazor J, Dannenmann S, Adjei RO, Fordjour YB, Ghampson IT, Blanusa M, Roccatano D, Schwaneberg U (2008) Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Protein Eng Des Sel 21:29–35

    Article  CAS  Google Scholar 

  154. Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao ZK (2011) Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc 133:20857–20862

    Article  CAS  Google Scholar 

  155. Plapp BV, Sogin DC, Dworschack RT, Bohlken DP, Woenckhaus C, Jeck R (1986) Kinetics and native and modified liver alcohol dehydrogenase with coenzyme analogs: isomerization of enzyme-nicotinamide adenine dinucleotide complex. Biochemistry 25:5396–5402

    Article  CAS  Google Scholar 

  156. Fisher HF, McGregor LL (1969) The ability of reduced nicotinamide mononucleotide to function as a hydrogen donor in the glutamic dehydrogenase reaction. Biochem Biophys Res Commun 34:627–632

    Article  CAS  Google Scholar 

  157. Campbell E, Meredith M, Minteer SD, Banta S (2012) Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun 48:1898–1900

    Article  CAS  Google Scholar 

  158. Schoevaart R, van Rantwijk F, Sheldon RA (1999) Carbohydrates from glycerol: an enzymatic four-step, one-pot synthesis. Chem Commun 31:2465–2466

    Article  Google Scholar 

  159. You C, Zhang Y-HP (2012) Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Syn. Biol. doi: 10.1021/sb300068g

  160. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

  161. Banki MR, Feng L, Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods 2:659–662

    Article  CAS  Google Scholar 

  162. Iturrate L, Sanchez-Moreno I, Doyaguez EG, Garcia-Junceda E (2009) Substrate channelling in an engineered bifunctional aldolase/kinase enzyme confers catalytic advantage for C–C bond formation. Chem Commun 2009:1721–1723

    Article  CAS  Google Scholar 

  163. Bulow L, Ljungcrantz P, Mosbach K (1985) Preparation of a soluble bifunctional enzyme by gene fusion. Nat Biotechnol 3:821–823

    Article  Google Scholar 

  164. Chen X, Liu Z, Zhang J, Zhang W, Kowal P, Wang P (2002) Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: α-gal epitope producing “superbug”. ChemBioChem 4:47–53

    Article  Google Scholar 

  165. Nahalka J, Liu Z, Chen X, Wang PG (2003) Superbeads: Immobilization in “sweet” chemistry. Chem Eur J 9:372–377

    Article  CAS  Google Scholar 

  166. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  Google Scholar 

  167. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  Google Scholar 

  168. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25:369–384

    Article  CAS  Google Scholar 

  169. Chen K, Arnold FH (1993) Turning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA 90:5618–5622

    Google Scholar 

Download references

Acknowledgments

This work was supported partially by the Shell Game Charger Program, DOE BioEnergy Science Center (BESC), DOE ARPA-E Petro project, the College of Agriculture and Life Sciences Bioprocessing and Biodesign Research Center at Virginia Tech, and NSF SBIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-H. Percival Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

You, C., Zhang, YH.P. (2012). Cell-Free Biosystems for Biomanufacturing. In: Zhong, JJ. (eds) Future Trends in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_159

Download citation

Publish with us

Policies and ethics