Skip to main content

Bioethanol from Lignocellulosic Biomass

  • Chapter
  • First Online:
Biotechnology in China III: Biofuels and Bioenergy

Abstract

China is suffering from a sustained shortage of crude oil supply, making fuel ethanol and other biofuels alternative solutions for this issue. However, taking into account the country’s large population and dwindling arable land due to rapid urbanization, it is apparent that current fuel ethanol production from grain-based feedstocks is not sustainable, and lignocellulosic biomass, particularly agricultural residues that are abundantly available in China, is the only choice for China to further expand its fuel ethanol production, provided economically viable processes can be developed. In this chapter, cutting edge progress in bioethanol is reviewed, with a focus on the understanding of the molecular structure of the feedstock, leading pretreatment technologies, enzymatic hydrolysis of the cellulose component and strategies for the co-fermentation of the C5 and C6 sugars with engineered microorganisms. Finally, process integration and optimization is addressed with a case study on the COFCO Corporation’s pilot plant, and challenges and perspectives for commercial production of bioethanol are highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863

    CAS  Google Scholar 

  2. Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414

    Article  CAS  Google Scholar 

  3. Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  4. Vleet JHV, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306

    Article  Google Scholar 

  5. Service RF (2007) Biofuel researchers prepare to reap a new harvest. Science 315:1488–1491

    Article  CAS  Google Scholar 

  6. Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J 54:559–568

    Article  CAS  Google Scholar 

  7. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  Google Scholar 

  8. Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393

    Article  CAS  Google Scholar 

  9. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  10. O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  11. Heiner AP, Sugiyama J, Teleman O (1997) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyd Res 273:207–223

    Article  Google Scholar 

  12. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  13. Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  CAS  Google Scholar 

  14. Chundawat SPS, Beckham GT, Himmel ME et al (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:6.1–6.25

    Article  Google Scholar 

  15. Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  16. da Costa Sousa L, Chundawat SPS, Balan V et al (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  Google Scholar 

  17. Binod P, Satyanagalakshmi K, Sindhu R et al (2011) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy (In press)

    Google Scholar 

  18. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  19. Abatzoglou N, Chornet E, Belkacemi K (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosic fraction. Chem Eng Sci 47:1109–1122

    Article  CAS  Google Scholar 

  20. Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985

    Article  CAS  Google Scholar 

  21. Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:11

    Article  CAS  Google Scholar 

  22. Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  CAS  Google Scholar 

  23. Kim Y, Hendrickson R, Mosier NS et al (2009) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer

    Google Scholar 

  24. Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245

    Article  CAS  Google Scholar 

  25. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977

    Article  CAS  Google Scholar 

  26. Saha BC, Iten LB, Cotta MA et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  27. Zhu Y, Lee YY, Elander RT (2004) Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 117:103–114

    Article  CAS  Google Scholar 

  28. Schell DJ, Farmer J, Newman M et al (2003) Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105–108:69–85

    Article  Google Scholar 

  29. Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report, NREL/TP-5100-47764

    Google Scholar 

  30. Gupta R, Lee YY (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol Prog 26:1180–1186

    CAS  Google Scholar 

  31. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006

    Article  CAS  Google Scholar 

  32. Kim TH, Kim JS, Sunwoo C et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  CAS  Google Scholar 

  33. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  34. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  Google Scholar 

  35. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013

    Article  CAS  Google Scholar 

  36. Kim TH, Lee YY (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57

    Article  CAS  Google Scholar 

  37. Teymouri F, Laureano-Perez L, Alizadeh H et al (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018

    Article  CAS  Google Scholar 

  38. Balan V, Bals B, Chundawat SPS et al (2010) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer

    Google Scholar 

  39. Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  Google Scholar 

  40. Park N, Kim HY, Koo BW et al (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine. Bioresour Technol 101:7046–7053

    Article  CAS  Google Scholar 

  41. Holm J, Lassi U (2011) Ionic Liquids in the pretreatment of lignocellulosic biomass. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech, Rijeka

    Google Scholar 

  42. Mora-Pale M, Meli L, Doherty TV et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245

    Article  CAS  Google Scholar 

  43. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105–108:27–41

    Article  Google Scholar 

  44. Dashtban M, Schraft H, Syed TA et al (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    CAS  Google Scholar 

  45. Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  CAS  Google Scholar 

  46. Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CABI

    Google Scholar 

  47. Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419

    Article  CAS  Google Scholar 

  48. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies form sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  Google Scholar 

  49. Mamman AS, Lee JM, Kim YC et al (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofuel Bioprod Biorefin 2:438–454

    Article  CAS  Google Scholar 

  50. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  51. Tolan JS (1999) Alcohol production from cellulosic biomass: the Iogen process, a model system in operation. In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham

    Google Scholar 

  52. Wang C, Wu G, Chen C et al (2011) High production of β-glucosidase by Aspergillus niger on corncob. Appl Biochem Biotechnol. (In press)

    Google Scholar 

  53. Öhgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839

    Article  Google Scholar 

  54. Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17

    Google Scholar 

  55. Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  56. Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58:741–761

    Article  Google Scholar 

  57. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    Article  CAS  Google Scholar 

  58. Jin M, Balan V, Gunawan C et al (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297

    Article  CAS  Google Scholar 

  59. Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774

    Article  CAS  Google Scholar 

  60. Fujita Y, Ito J, Ueda M et al (2004) Synergistic saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  61. Katahira S, Fujita Y, Mizuike A et al (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  Google Scholar 

  62. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  Google Scholar 

  63. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  64. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Microbiol 11:187–198

    CAS  Google Scholar 

  65. Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  Google Scholar 

  66. Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-Fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Env Microbiol 62:4465–4470

    CAS  Google Scholar 

  67. Mohagheghi A, Evans K, Chou YC et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898

    Article  Google Scholar 

  68. Seo JS, Chong H, Park HS et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68

    Article  CAS  Google Scholar 

  69. Lee KY, Park JM, Kim TY et al (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 9:94

    Article  CAS  Google Scholar 

  70. Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325–329

    Article  CAS  Google Scholar 

  71. Mukhopadhyay A, Redding AM, Rutherford BJ (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234

    Article  CAS  Google Scholar 

  72. Reisch M (2006) Fuels of the future: Chemistry and agriculture join to make a new generation of renewable fuels. Chem Eng News 84(47):30–32

    Article  Google Scholar 

  73. Thomas KC, Hynes SH, Ingledew WM (1996) Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem 31:321–331

    Article  CAS  Google Scholar 

  74. Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the P. stipitis xylitol dehydrogenase gene XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500

    Article  CAS  Google Scholar 

  75. Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88

    Article  CAS  Google Scholar 

  76. Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  Google Scholar 

  77. Ho NWY, Chen Z, Brainard A (1997) Genetically engineered yeast capable of effective fermentation of xylose to ethanol. Proceedings of Tenth International Symposium on Alcohol Fuels, Colorado Springs, CO, USA, 7–10 Nov P738.

    Google Scholar 

  78. Toon ST, Philippidis GP, Ho NYW et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotech 63–65:243–255

    Article  Google Scholar 

  79. Bera AK, Sedlak M, Khan A et al (2010) Establishment of L-arabinose fermentation in Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotech 87:1803–1811

    Article  CAS  Google Scholar 

  80. Casey E, Sedlak M, Ho NWY et al (2010) Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by recombinant S. cerevisiae. FEMS Yeast Res 10:385–393

    Article  CAS  Google Scholar 

  81. Athmanathan A, Sedlak M, Ho NYW et al (2011) Effect of product inhibition on xylose fermentation to ethanol in glucose-xylose co-fermenting S. cerevisiae 424A (LNH-ST). Biol Eng 3:111–124

    Google Scholar 

  82. Bera AK, Ho NYW, Khan A et al (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617–626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Wu Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, XQ. et al. (2011). Bioethanol from Lignocellulosic Biomass. In: Bai, FW., Liu, CG., Huang, H., Tsao, G. (eds) Biotechnology in China III: Biofuels and Bioenergy. Advances in Biochemical Engineering Biotechnology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_129

Download citation

Publish with us

Policies and ethics