Skip to main content

Organic Chemicals from Bioprocesses in China

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 122))

Abstract

Over the last 20 years, China has successfully established a modern biotechnology industry from almost nothing. Presently, China is a major producer of a vast array of products involving bioprocesses, for some China is even the world’s top producer. The ever-increasing list of products includes organic acids, amino acids, antibiotics, solvents, chiral chemicals, biopesticides, and biopolymers. Herein, the research and development of bioprocesses in China will be reviewed briefly. We will concentrate on three categories of products: small molecules produced via fermentation, biopolymers produced via fermentation and small chemicals produced by enzyme-catalyzed reactions. In comparison with the traditional chemical process, in which, nonrenewable mineral resources are generally used, products in the first and second categories noted above can use renewable bioresources as raw materials. The bioprocesses are generally energy saving and environmentally benign. For products developed via the third category, although the raw materials still need to be obtained from mineral resources, the biocatalysts are more effective with higher selectivity and productivity, and the bioprocesses occur under ambient temperature and pressure, therefore, these are “green processes.” Most of the products such as citric acid, xanthan and acrylamide etc., discussed in this paper have been in large-scale commercial production in China. Also introduced herein are three scientists, Prof. Shen Yinchu, Prof. Ouyang Pingkai and Prof. Chen Guoqiang, and six enterprises, Anhui Fengyuan Biochemical Co. Ltd., Shandong Hiland Biotechnology Co. Ltd., Shandong Fufeng Fermentation Co. Ltd., Shandong Bausch & Lomb-Freda Pharmaceutical Co. Ltd., Zhejiang Hangzhou Xinfu Pharmaceutical Co. Ltd., and Changzhou Changmao Biochemical Engineering Co. Ltd.; they have all contributed a great deal to research and development in the commercialization of bioprocesses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhu YZ, Lu DQ, Wan HG, Wei P, Zhou H, Ouyang PK (2004) Progress and trends of industrial biotechnology. J Chem Ind Eng 55(12):1950–1956, in Chinese

    CAS  Google Scholar 

  2. Xing XR, Liu B (2007) Current status of the development and future trends of industrial biotechnology. Bull Chin Acad Sci 22(3):216–222, in Chinese

    Google Scholar 

  3. Bureau of Life Science and Biotechnology (eds) (2009) Report on the progress of 2008 industrial biotechnology. Chinese Academy of Science, Science Press, Beijing

    Google Scholar 

  4. Bailey JE, Ollis DF (1997) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  5. Huang XC, Jin X, Mao PH (2005) Comments on the strain improvement of Aspergillus niger fermented production citric acid. Biotechnology 15(3):93–95, in Chinese

    Google Scholar 

  6. Peng YL, Yao SZ, Ji SL, Ma ZF (2002) Review on separation of citric acid from fermentation broth. J Beijing Polytechnic Univ 28(1):46–51, in Chinese

    CAS  Google Scholar 

  7. Hong HS, Ye Y, Zhang QW, Liu S, Hua M (2005) Study on the new technology of fed-batch fermentation for citric acid production from cassava. Food Ferment Ind 12:22–25, in Chinese

    Google Scholar 

  8. Zhang JF, Lin JP, Cen PL (2008) Catalytic dehydration of lactic acid to acrylic acid over sulfate catalysts. Can J Chem Eng 86:1047–1053

    Article  CAS  Google Scholar 

  9. Qian ZL, Lao HZ, Wang J, Lai SZ (2003) Recent advances in industrial lactic acid production by microorganisms. Chin J Bioprocess Eng 1(1):23–27, in Chinese

    CAS  Google Scholar 

  10. Jiang Y, Liu TZ, Gao LL, Ji Y, Qi XM (2009) Fermentation kinetic of l-lactic acid by Rhizopus Oryzae. J Chin Inst Food Sci Technol 9(2):18–22, in Chinese

    CAS  Google Scholar 

  11. Wang GY, Shi GF, Jun HL, Li CL, Chen XF (2007) Study on production of l(+)-lactic acid from potato starch by direct fermentation. Sci Technol Food Ind 11:202–204, in Chinese

    Google Scholar 

  12. Jiang ST, Zheng Z, Zhu Y, Wu XF, Pan LJ, Luo SH, Du W (2008) Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae. Chin J Biotechnol 24(10):1729–1733, in Chinese

    CAS  Google Scholar 

  13. Shi GF, Wang GY (2007) Advances in fermentation of l-(+)-lactic acid and isolation technology. Food Sci 28(12):547–550, in Chinese

    CAS  Google Scholar 

  14. Wang GY, Shi GF, Li CL, Suan HL, Cui GD (2009) New technology of extraction technology of extracting and sublimating L(+)-lactic acid. Ion Exch Adsorption 25(2):158–166, in Chinese

    Google Scholar 

  15. Liu SF, Cai ZL (2000) Fermentation of itaconic acid and its kinetics. Eng Chem Metall 21(1):59–63, in Chinese

    Google Scholar 

  16. Yu ZM, Wu K, Jin J, Chen XM (2009) Solid state fermentation condition for itaconic acid production from agricultural waste. Food Ferment Ind 35(1):99–102, in Chinese

    Google Scholar 

  17. Li X, Zhang XM, Xu JC (2008) Breeding of thermostable high-yielding strain for itaconic acid production. Ind Microbiol 38(6):49–52, in Chinese

    CAS  Google Scholar 

  18. Yang Y, Lu LS (2001) Recovery of itaconic acid from fermentation liquor. Biotechnology 11(3):46–48, in Chinese

    Google Scholar 

  19. Zhang HX, Luo HF, Zhang QL (2003) Research progress in production of succinic acid by fermentation. J Microbiol 30(5):102–106, in Chinese

    CAS  Google Scholar 

  20. Zhan XB, Chen S, Zheng ZY (2007) Recent development in metabolic engineering for production of succinic acid by Escherichia coli. Chin J Process Eng 7:840–846, in Chinese

    CAS  Google Scholar 

  21. Liu YP, Zhu LL, Zheng P, Ni Y, Sun ZH (2007) Screening and breeding of strains for producing succinic acid. Ind Microbiol 37(2):1–6, in Chinese

    Google Scholar 

  22. Liu YP, Zheng P, Ni Y, Dong JJ, Wei P, Sun ZH (2008) Breeding of monofluoroacetate-resistant strains of Actinobacillus succinogenes and the mechanism based on metabolic flux analysis. Chin J Biotechnol 24(3):460–467, in Chinese

    CAS  Google Scholar 

  23. Kang Z, Geng YP, Zhang YY, Qi QS (2009) Construction of engineering cell for succinic acid production in aerobic condition. Chin J Biotechnol 24:2081–2085, in Chinese

    Google Scholar 

  24. Li XJ, Pan LJ, Jiang ST (2008) Neural network analysis for fermentation production technics of succinic acid from crop straw hydrolysate. Food Sci 29:471–474, in Chinese

    Google Scholar 

  25. Jiao P, Ma SW, Hua YT, Huang YM, Cao ZA (2000) Isolation and enzyme determination of Candida tropicalis mutants for DCA production. J Gen Appl Microbiol 46:245–249

    Article  CAS  Google Scholar 

  26. Li SL, Hua YT, Huang YM, Jiao P, Cao ZA (2002) Effects of H2O2 on cell growth and product formation in long chain cicarboxylic acids fermentation. Acta Microbiol Sin 42(3):359–363, in Chinese

    CAS  Google Scholar 

  27. Chen YD (2002) progress and prospect of commercial production of long carbon Chain dicarboxylic acids. Microbiology 29(2):104, in Chinese

    Google Scholar 

  28. Chen YD, Pang YC, Liu T, Hao XZ (1996) Studies on fermentation of pentadecanedioicacid. Acta Microbiol Sin 36(1):37–41, in Chinese

    CAS  Google Scholar 

  29. Fan F, Dong MY, Fang XS (2004) Study on decolorizing fermentation liquor containing long-chain dicarboxylic acid. Fine Special Chem 12(23):25–27, in Chinese

    CAS  Google Scholar 

  30. Dong MY, Li SL, Fang XS (2002) Study on fermentation of n-paraffin for producing mixed dicarboxylic acids. Acta Microbiol Sin 42(1):114–116, in Chinese

    Google Scholar 

  31. Compere AL, Griffin WL (1979) Evaluation of substrate for butanol production. Dev Ind Microbiol 20:509

    Google Scholar 

  32. Buchanan RE, Gibbons NE (eds) (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, USA, pp 556–560

    Google Scholar 

  33. Underkofler LA, Hickey RJ (1954) Industrial fermentation, vol 1. Chemical Publishing, New York, USA, pp 347–388

    Google Scholar 

  34. Liu Y, Liu HJ, Zhang JA, Cheng KK, Chen ZD (2008) Research progress in new biofuel butanol. Mod Chem Ind 28(6):28–33, in Chinese

    Google Scholar 

  35. Jin XQ, Wang GL, He BF (2007) Research progress and high yield strategy of acetone-butanol fermentation. Chem Ind Eng Prog 26(12):1727–1732, in Chinese

    CAS  Google Scholar 

  36. Jin XQ, Zhou H, Wu XM, Zhang GD, He BF (2008) A rapid screening method of producing strain in acetone-butanol fermentation. Chin J Process Eng 8(6):1185–1188, in Chinese

    CAS  Google Scholar 

  37. Hu CY, Du YP, Yang Y, Shi ZP, Duan ZY (2007) Preliminary study on coupling between biodiesels and acetone-butanol fermentation. Chin J Bioprocess Eng 5(1):27–32, in Chinese

    CAS  Google Scholar 

  38. Zhang YF, Chen J, Yang WL, Chiao JS (1996) The screening and application of the Clostridium actobutylicum with high butanol ratio. Ind Microbiol 26:1–6, in Chinese

    CAS  Google Scholar 

  39. Wang XT, Chen MH (2000) Productive routes and application of 1, 3-propanediol. Coal Chem Ind 4:38–40, in Chinese

    Google Scholar 

  40. Chen G, Zhao YN, Yao SJ, Fang PS (2007) Production of 1, 3-propanediol by co-culture of two immobilized microbes in series. J Beijing Univ Chem Technol 34(6):640–644, in Chinese

    CAS  Google Scholar 

  41. Peng YQ, Lan L, Fang BS, Zhang WZ (2006) The selection of 1, 3-propanediol produced bacterium enduring high glycerol concentration mutate and its immobidi ferment study. Acta Laser Biol Sin 16:754–758, in Chinese

    Google Scholar 

  42. Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, Xu JM (2006) Production of 1, 3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 28(22):1817–1821

    Article  CAS  Google Scholar 

  43. Hao J, Xu F, Liu HJ, Liu DH (2006) Downstream processing of 1, 3-propanediol fermentation broth. J Chem Technol Biotechnol 81(1):102–108

    Article  CAS  Google Scholar 

  44. Liu HJ, Xu YH, Zhang DJ, Xiu ZL (2006) Investigation of two successive bioprocesses for the microbial production of 1, 3-propanediol. Food Ferment Ind 32(2):4–7, in Chinese

    CAS  Google Scholar 

  45. Rehm HA (ed) (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic, New Zealand

    Google Scholar 

  46. Chen XS, Jin XB, Zhuang XL (2004) Biopolymer, vol 10. Chemical Industries Press, Beijing

    Google Scholar 

  47. Kunioka M (1997) Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl Microbiol Biotechnol 47(5):469–457

    Article  CAS  Google Scholar 

  48. Ogawa Y, Yamaguchi F, Yuasa K, Tahara Y (1997) Efficient production of gamma–polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci Biotechnol Biochem 61:1684–1687

    Article  CAS  Google Scholar 

  49. Shi QS (2004) Biosynthesis and application of γ-polyglutamic acid. Fine Special Chem 12(11):20–23, in Chinese

    CAS  Google Scholar 

  50. Shi F, Xu ZN, Cen PL (2007) Microbial production of natural poly amino acid. Sci China Ser B Chem 50(3):291–303, in Chinese

    Article  CAS  Google Scholar 

  51. Shi F, Xu ZN, Cen PL (2006) Optimization of gamma-polyglutamic acid production by Bacillus subtilis ZJU-7 using a surface-response methodology. Biotechnol Bioprocess Eng 11(3):251–257

    Article  CAS  Google Scholar 

  52. Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41(9):1807–1809

    Article  CAS  Google Scholar 

  53. Hirakl J (2000) ε-Polylysine, its development and utilization. Fine Chem 29(1):18–25

    Google Scholar 

  54. Shima S, Himyshi M (1984) Antimicrobial action of ε-poly-L-lysine. J Antibiot 11:1449–1455

    Article  Google Scholar 

  55. Shen JJ, Zhang XJ, Zhou XY (2006) The production of poly-ε-lysine and its application in food industry. Sci Technol Food Ind 5:158–160 (in Chinese)

    Google Scholar 

  56. Zou KH, Zhan HJ (2008) Application of polylysine as food preservative. Food Res Dev 29(1):165–167, in Chinese

    Google Scholar 

  57. Jia SR, Dong HJ, Jiang JY, Liu WC (2004) The selection and breeding of ε-polylysine high-producing strain. Food Ferment Ind 30(11):14–17 (in Chinese)

    Google Scholar 

  58. Jiang JY, Jia SR, Dong HJ, Niu RY (2004) Effects of stirrer speed and pH on the ε-poly-L-lysine fermentation. Chin J Bioprocess Eng 2(2):60–63, in Chinese

    CAS  Google Scholar 

  59. Song SF, Cui J, Luo YJ, Lai GL, Zhang ZZ (2004) Progress in researches of microbial polysaccharides. Oilfield Chem 21(1):91–96, in Chinese

    Google Scholar 

  60. Becker A, Vorholter FJ (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, UK

    Google Scholar 

  61. Whistler RL, BeMiller JN (1973) Industrial gums: polysaccharides and their derivatives. Academic Press, New York

    Google Scholar 

  62. Liu QQ (2002) The development trends and present situation of xanthan gum. China Food Additives 6:5–7, in Chinese

    Google Scholar 

  63. Xu P, Lin JQ, Lin JQ, Jiang BY (1994) Xanthan gum production with pumping static-mixing loop fermentor(PS-Loop Fermentor). Biotechnol Lett 16(5):523–526

    Article  CAS  Google Scholar 

  64. Chang C, Ma XJ, Xu GZ, Fang SQ, Li HL (2004) Study on fermentation of xanthan gum in airlift fermentor. Food Sci 25(2):111–114, in Chinese

    CAS  Google Scholar 

  65. Jansson PE, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res 124(1):135–139

    Article  CAS  Google Scholar 

  66. Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45(4):341–354

    CAS  Google Scholar 

  67. Li XY, Li HJ, He ZF, Dong Q (2003) Gellan gum and its application in food industry. Food Ferment Ind 31(6):94–96, in Chinese

    Google Scholar 

  68. Wen Y, Zhao GH (2003) The novelty microbial exocellular polysaccharide-gellan gum. China Food Addit 3:49–52, in Chinese

    Google Scholar 

  69. Li HJ, Yan Z, Zhu XQ, Guo XP (2007) Optimization of fermentation production process of gellan gum. Food Drug 11:7–12 (in Chinese)

    Google Scholar 

  70. Chen P, Lu WY, Zhou JF, Yan YQ (1999) Review of application and preparation of hyaluronic acid. J Shanghai Univ 5(1):69–73, in Chinese

    CAS  Google Scholar 

  71. Oregan M, Martini I, Crescenzi F, Luca CD, Lansing M (1994) Molecular mechanisms and genetics of hyaluronan biosynthesis. Int J Biol Macromol 16(6):283–286

    Article  CAS  Google Scholar 

  72. Chong BF, Blank LM, Mclaughlin R, Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66(4):341–351

    Article  CAS  Google Scholar 

  73. Guo XP, Ling PX, Wang CX, Zhang TM (2000) Production of hyaluronic acid. Pharm Biotechnol 7(1):61–64, in Chinese

    CAS  Google Scholar 

  74. Zhang YK (2002) Metabolic engineering research of hyaluronic acid producing bacterium Streptococcus equi. Master Thesis, GuangXi University (in Chinese)

    Google Scholar 

  75. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472

    CAS  Google Scholar 

  76. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1(1):1–24

    Article  Google Scholar 

  77. Shang LG, Jiang M, Chang HN (2003) Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol Lett 25(17):1415–1419

    Article  CAS  Google Scholar 

  78. Zhang Y, Sun XN, Chen B, Dong ZL (2003) Production of polyhydroxyalkanoates by a mixed culture. Acta Microbiol Sin 43(6):799–804, in Chinese

    CAS  Google Scholar 

  79. Jiang Y, Song X, Gong L, Li P, Dai C, Shao W (2008) High poly(b-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enzyme Microb Technol 42(2):167–172, in Chinese

    Article  CAS  Google Scholar 

  80. Chen GQ, Koenig KH, Lafferty RM (1991) Production of poly-D(-)-3-hydroxybutyrate and poly-D(-)-3-hydroxyvalerate by strains of Alcaligenes latus. Antonie van Leewenhoek 60:61–66

    Article  CAS  Google Scholar 

  81. Hang XM, Zhang G, Wang GL, Zhao XH, Chen GQ (2002) PCR cloning of polyhydroxyalkanoate biosynthesis genes from Burkholderia caryophylli and their functional expression in recombinant Escherichia coli. FEMS Microbiol Lett 210(1):49–54

    Article  CAS  Google Scholar 

  82. Gao HJ, Wu Q, Chen GQ (2002) Enhanced production of D-(-)-3-hydroxybutyric acid by recombinant Escherichia coli. FEMS Microbiol Lett 213:59–65

    CAS  Google Scholar 

  83. Wu Q, Zheng Z, Xi JZ, Gao HJ, Chen GQ (2003) Production of 3-(R)-hydroxybutyric acid by recombinant Escherichia coli HB101 harboring genes of phbA and phbB. J Chem Eng Jpn 36:1170–1173

    Article  CAS  Google Scholar 

  84. Yu HM, Shi Y, Sun XD, Luo H, Shen ZY (2004) New technique for recovery of PHB from recombinant Escherichia coli based on expression of lytic genes of phage λ with S amber mutation. J Chem Ind Eng 55(4):623–628, in Chinese

    CAS  Google Scholar 

  85. Lee CY, Chang HN (1990) Continuous production of acrylamide using immobilized Brevibacterium Sp Ch2 in a 2-Stage packed-bed reactor. Biotechnol Lett 12(1):23–28

    Article  CAS  Google Scholar 

  86. Luo JX, Xue JP, Shen YC (2007) The R&D course of acrylamide production by biocatalysis in China. Shanghai Chem Ind 32(2):17–21, in Chinese

    CAS  Google Scholar 

  87. Yang MH, Zhou FZ, Li ZH (1996) Study on bioconversion from acrylonitrile to acrylamide (1) isolation, mutagenization and identification of strain. Shandong Sci 9(3):39–24, in Chinese

    Google Scholar 

  88. Deng L, Liu YL, Wang ZY (2005) Domestication of a nitrile hydratase producing strain and optimization on its nitrile hydratase producing conditions. Food Ferment Ind 31(1):53–56, in Chinese

    CAS  Google Scholar 

  89. Liu M, Li C, Gao Y, Wang YN, Cao ZA (2003) Optimization of glucose-Co coupling fed batch fermentation for production of nitrile hydratase of high activity by nocardia sp RS. Chin J Process Eng 3(6):555–559, in Chinese

    CAS  Google Scholar 

  90. Rowicki TL, Synoradzki L, Wlostowski M (2006) Calcium pantothenate. Part 1. (R, S)-pantolactone technology improvement at the tonnage scale. Ind Eng Chem Res 45(4):1259–1265

    Article  CAS  Google Scholar 

  91. Hata H, Shimizu S, Yamada H (1987) Enzymatic production of D-(-)-pantoyl lactone from ketopantoyl lactone. Agric Biol Chem 51(11):3011–3016

    Article  CAS  Google Scholar 

  92. Kataoka M, Shimizu S, Yamada H (1990) Novel enzymatic production of D-(-)-pantoyl lactone through the stereospecific reduction of ketopantoic. Agric Biol Chem 54(1):177–182

    Article  CAS  Google Scholar 

  93. Kataoka M, Shimizu S, Doi Y, Yamada H (1990) Stereospecific reduction of ethyl-2′-ketopantothenate to ethyl D-(+)-pantothenate with microbial-cells as a catalyst. Appl Environ Microbiol 56(11):3595–3597

    CAS  Google Scholar 

  94. Shimizu S, Hattori S, Hata H, Yamada H (1987) One-step microbial conversion of a racemic-mixture of pantoyl lactone to optically-active D-(-)-pantoyl lactone. Appl Environ Microbiol 53(3):519–522

    CAS  Google Scholar 

  95. Glanzer BI, Faber K, Griengl H (1988) Microbial resolution of O-acetylpantoyl lactone. Enzyme Microb Technol 10(11):689–690

    Article  Google Scholar 

  96. Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995) Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: Selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol 44(3–4):333–338

    Article  CAS  Google Scholar 

  97. Shimizu S, Kataoka M (1996) Optical resolution of pantolactone by a novel fungal enzyme, lactonolaydrolase. Ann N Y Acad Sci (Enzyme Engineering XIII) 799:650–658

    Google Scholar 

  98. Tang YX, Sun ZH, Hua L, Guo XF, Wang J (2001) Optical resolution of racemic DL-pantolactone by a fungal enzyme, D-lactonohydrolase. Ind Microbiol 31(3):1–5, in Chinese

    CAS  Google Scholar 

  99. Tang YX, Sun ZH, Hua L, Guo XF, Wang J (2002) Production of D-pantolactone hydrolase by Fusarium moniliforme SW-902. Acta Microbiol Sin 42(1):81–87, in Chinese

    CAS  Google Scholar 

  100. Sun ZH, Hua L (2004) Process on production of D-calcium pantothenate and D-Panthenol by biotechnology. Fine Special Chem 12(10):11–15, in Chinese

    Google Scholar 

  101. Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I (1991) l-malic acid formation by immobilized Saccharomyces-cerevisiae amplified for fumarase. Enzyme Microb Technol 13(12):991–996

    Article  CAS  Google Scholar 

  102. Zelle RM, de Hulster E, van Winden WA (2008) Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766–2777

    Article  CAS  Google Scholar 

  103. Giorno L, Drioli E, Carvoli G, Cassano A, Donato L (2001) Study of an enzyme membrane reactor with immobilized fumarase for production of l-malic acid. Biotechnol Bioeng 72(1):77–84

    Article  CAS  Google Scholar 

  104. Marconi W, Faiola R, Piozzi A (2001) Catalytic activity of immobilized fumarase. J Mol Catal B Enzym 15(1–3):93–99

    Article  CAS  Google Scholar 

  105. Pines O, Shemesh S, Battat E, Goldberg I (1997) Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48(2):248–255

    Article  CAS  Google Scholar 

  106. Hu YH, Ouyang PK, Shen SB, Chen WL (2001) Study on the optimal conditions in simultaneous reaction and separation for L-malic acid production. Chin J Biotechnol 17(5):503–505, in Chinese

    CAS  Google Scholar 

  107. Hu YH, Chen WL, Ouyang PK (1998) Study on the dissolution behaviors for substrate calcium fumarate and product calcium malate in simultaneous reaction and separation for l-malic acid production. Proceedings of the Eighth National Conference on Biochemical Engineering Dec 14th–16th, Nanjing, China

    Google Scholar 

  108. He BF, Wu JQ, Ouyang PK (2004) Malease-catalyzed production of D-malate by coupling reaction and separation. Mod Chem Ind 24(12):27–31, in Chinese

    CAS  Google Scholar 

  109. Synoradzki L, Ruskowski P, Bernas U (2005) Tartaric acid and its O-acyl derivatives. Part 1. Synthesis of tartaric acid and O-acyl tartaric acids and anhydrides. Org Prep Proced Int 37(1):37

    Article  CAS  Google Scholar 

  110. Chandrashekar K, Felse PA, Panda T (1999) Optimization of temperature and initial pH and kinetic analysis of tartaric acid production by Gluconobacter suboxydans. Bioprocess Eng 20(3):203–207

    CAS  Google Scholar 

  111. Mantha D, Basha ZA, Panda T (1998) Optimization of medium composition by response surface methodology for the production of tartaric acid by Gluconobacter suboxydans. Bioprocess Eng 19(4):285–288

    CAS  Google Scholar 

  112. Zhang JG, Qian YJ (2000) Production of L(+)-tartaric acid by immobilized Corynebacterium sp. JZ-1. Chin J Biotechnol 16(2):189–192, in Chinese

    CAS  Google Scholar 

  113. Sun ZH, Zheng P, Dai XT, Li H, Jin M (1995) Production of L(+)- tartaric acid by immobilized nocardia tartaricans SW 13-57. Chin J Biotechnol 11(4):372–376, in Chinese

    CAS  Google Scholar 

  114. Pan KX, Min H, Xia Y, Xu XY, Ruan AD (2004) Isolation, identification and phylogenetic analysis of Rhodococcus sp. strain m1 producing cis-epoxysuccinate hydrolase and optimization of production conditions. Acta Microbiol Sin 44(3):276–280, in Chinese

    CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was supported in part by the National Basic Research Program of China, 2007CB714304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilin Cen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Huang, J., Huang, L., Lin, J., Xu, Z., Cen, P. (2010). Organic Chemicals from Bioprocesses in China. In: Tsao, G., Ouyang, P., Chen, J. (eds) Biotechnology in China II. Advances in Biochemical Engineering / Biotechnology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_75

Download citation

Publish with us

Policies and ethics