Skip to main content

Impact of Thermodynamic Principles in Systems Biology

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 121))

Abstract

It is shown that properties of biological systems which are relevant for systems biology motivated mathematical modelling are strongly shaped by general thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near equilibria and thermodynamic driving force. Each of these aspects will be demonstrated both theoretically and experimentally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atkinson DE (1969) Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell. Curr Top Cell Reg 1:29–43

    Google Scholar 

  2. Canelas A, van Gulik WM, Heijnen JJ (2008) Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 100(4):734–743

    Article  CAS  Google Scholar 

  3. Nasution U, van Gulik WM, Kleijn RJ, van Winden WA, Proll A, Heijnen JJ (2006) Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnol Bioeng 94(1):159–166

    Article  CAS  Google Scholar 

  4. Nasution U, van Gulik WM, Proell A, van Winden WA, Heijnen JJ (2006) Generating short-term kinetic responses of primary metabolism of Penicillium chrysogenum through glucose perturbation in the bioscope mini reactor. Metab Eng 5(5):395–405

    Article  Google Scholar 

  5. Taymaz-Nikerel H, de Mey M, Ras C, ten Pierick A, Seifar RM, van Dam JC, Heijnen JJ, van Gulik WM (2009) Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Anal Biochem 386(11):9–19

    Article  CAS  Google Scholar 

  6. Maris AJA, Konings WN, Dijken JP, Pronk JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6(4):245–255

    Article  Google Scholar 

  7. Van Gulik WM, Heijnen JJ (1995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng 48(6):681–98

    Article  Google Scholar 

  8. Van Gulik WM, De Laat WTAM, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68(6):602–618

    Article  Google Scholar 

  9. Heijnen JJ, Van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39(8):833–58

    Article  CAS  Google Scholar 

  10. Heijnen JJ (1999) Bioenergetics of microbial growth. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. ISBN: 0-471-13822-3. Wiley, New York, pp 267–291

    Google Scholar 

  11. Tijhuis L, van Loosdrecht MCM, Heijnen JJ (1993) A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 42(4):509–19

    Article  CAS  Google Scholar 

  12. Anderson KB, Meyenburg K von (1980) J Bacteriol 144:114–123

    Google Scholar 

  13. De Jong-Gubbels P, Vanrolleghem P, Heijnen S, Van Dijken JP, Pronk JT (1995) Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 11(5):407–418

    Google Scholar 

  14. Vanrolleghem PA, de Jong-Gubbels P, van Gulik WM, Pronk JT, van Dijken JP, Heijnen S (1996) Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies. Biotechnol Progr 12(4):434–448

    Google Scholar 

  15. Stuckrath I, Lange HC, Kotter P, Van Gulik WM, Entian KD, Heijnen JJ (2002) Characterization of null mutants of the glyoxylate cycle and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified by chemostat cultivation. Biotechnol Bioeng 77(1):61–72

    Google Scholar 

  16. Van Gulik WM, Antoniewicz MR, DeLaat WTAM, Vinke JL, Heijnen JJ (2001) Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol Bioeng 72(2):185–193

    Article  Google Scholar 

  17. Smolders GJF, van der Meij J, van Loosdrecht MCM, Heijnen JJ (1995) A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnol Bioeng 47(3):277–87

    Article  CAS  Google Scholar 

  18. Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37–63

    Article  CAS  Google Scholar 

  19. Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van der Weijden CC, Schepper M et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

    Google Scholar 

  20. Rizzi M et al. (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng 55:592–608

    Google Scholar 

  21. Theobald U et al. (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55:305–316

    Google Scholar 

  22. Visser D et al. (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681

    Google Scholar 

  23. Nikerel IE, Van Winden WA, Van Gulik WM, Heijnen JJ (2006) A method for estimation of in-vivo elasticities in metabolic networks using data from steady-state and rapid sampling experiments with lin-log kinetics. BMC Bioinformatics 7:540

    Article  Google Scholar 

  24. Nikerel IE, Van Winden WA, Van Gulik WM, Heijnen JJ (2007) Linear-logarithmic kinetics; a framework for modelling kinetics of metabolic reaction networks. Simulation News Europe 17(1):19–26

    Google Scholar 

  25. Nikerel IE, Van Winden WA, Verheijen PJT, Heijnen JJ (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with lin-log kinetics. Metabolic engineering 11:20–30

    Google Scholar 

  26. Wu L, Van Dam JC, Schipper D, Kresnowati MTAP, Pröll A, Ras C, Van Winden WA, Van Gulik WM, Heijnen JJ (2006) Short term metabolome dynamics and carbon, electron and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN-PK.113-7D following a glucose pulse. Appl Environ Microbiol 72(5):3566–3577

    Google Scholar 

  27. Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modelling – review. Biotechnol Bioeng 91(5):534–545

    Article  CAS  Google Scholar 

  28. Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using lin-log kinetics. Metab Eng 5:164–176

    Google Scholar 

  29. Westerhoff HV, ven Dam K (1987) Mosaic non-equilibrium thermodynamics and the control of biological free energy transduction. Elsevier, Amsterdam

    Google Scholar 

  30. Del Rosario RCH, Mendoza E, Voit EO (2008) Challenges in lin-log modelling of glycolysis in Lactocaccus lactis. IET Syst Biol 2(3):136–149

    Article  Google Scholar 

  31. Visser D, Schmid JW, Mauch K, Reuss M, Heijnen JJ (2004) Optimal redesign of primary metabolism in Escheria coli using lin-log kinetics. Metab Eng 6:378–390

    Article  CAS  Google Scholar 

  32. Smallbone K, Simeonides E, Broomhead D, Kell D (2007) Something from nothing – bridging the gap between constraint – based and kinetic modelling. FEBS J 274:5576–85

    Article  CAS  Google Scholar 

  33. Kresnowati MTAP, van Winden WA, Heijnen JJ (2005) Determination of elasticities, concentration and flux control coefficients from transient metabolite data using linlog kinetics. Metab Eng 7(2):142–153

    Article  CAS  Google Scholar 

  34. Nikerel IE, Canelas AB, Jol SJ, Verheijen PJT, Heijnen JJ (2009) Construction of kinetic models for metabolic reaction networks: lessons learned in analysing short-term stimulus response data. Proceedings MATHMOD 09, 805–814. Presented at MATHMOD 09, Vienna, February 11–13, 2009

    Google Scholar 

  35. Raamsdonk LM, Teusink B, Broadhurst D, Zhang NS, Hayes A, Walsh MC et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  Google Scholar 

  36. Wu L, Van Winden WA, Van Gulik WM, Heijnen JJ (2005) Application of metabolome data in functional genomics: a conceptual strategy. Metab Eng 7:302–310

    Article  CAS  Google Scholar 

  37. Van Gulik WM, van Winden WA, Heijnen JJ (2002) Metabolic flux analysis, modeling and engineering solutions. In Vinci VA, Parekj SR (eds) Handbook of industrial cell culture. Mammalian, microbial, and plant cells. Humana Press, Towota, pp 351–395

    Google Scholar 

  38. Wu L, Wang W, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem 271:3348–3359

    Article  CAS  Google Scholar 

  39. Heijnen JJ, van Gulik WM, Shimizu H, Stephanopoulus G (2004) Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data. Metab Eng 6:391–400

    Google Scholar 

  40. Magnus JB, Hollwedel D, Oldiger M, Takors R (2006) Monitoring and modelling of the reaction dynamics in the valise/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Progr 22:1071–1083

    Article  CAS  Google Scholar 

  41. Feng-Sheng Wang, Chih-Lung Ko, Voit EO (2007) Kinetic modelling using S-systems and lin-log approaches. Biochem Eng J 33:238–247

    Google Scholar 

  42. Reuss M, Aquilera-Vazquez L, Mauch K (2007) Reconstruction of dynamic network models from metabolite measurements. Top Curr Genet 18:97–127. Nielsen J, Jewett MC (eds) Metabolomics. Springer, Heidelberg

    Google Scholar 

  43. Reed JL, Palsson BO (2003) Thirteen years of building constraint-based in-silico models of Escherichia coli. J Bacteriol 185(9):2692–2699

    Article  CAS  Google Scholar 

  44. Heinrich R, Schuster S (1996) The regulation of cellular systems. Science 372 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Heijnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Heijnen, J.J. (2010). Impact of Thermodynamic Principles in Systems Biology. In: Wittmann, C., Krull, R. (eds) Biosystems Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_63

Download citation

Publish with us

Policies and ethics