Skip to main content

Bioreactor Studies and Computational Fluid Dynamics

  • Chapter

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 112))

The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng 31(9):1017–1030

    Article  CAS  PubMed  Google Scholar 

  2. Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100(3):235–245

    Article  PubMed  CAS  Google Scholar 

  3. Kumar S, Wittmann C, Heinzle E (2004) Minibioreactors. Biotechnol Lett 26(1):1–10

    Article  CAS  PubMed  Google Scholar 

  4. Wendt D, Jakob M, Martin I (2005) Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. J Biosci Bioeng 100(5):489–494

    Article  CAS  PubMed  Google Scholar 

  5. Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteo-chondral grafts. Orthod Craniofac Res 8(3):209–218

    Article  CAS  PubMed  Google Scholar 

  6. Martin I., Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    Article  CAS  PubMed  Google Scholar 

  7. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188

    Article  CAS  PubMed  Google Scholar 

  8. Kimbell JS, Subramaniam RP (2001) Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhal Toxicol 13(5):325–334

    Article  CAS  PubMed  Google Scholar 

  9. Grotberg JB (2001) Respiratory fluid mechanics and transport processes. Annu Rev Biomed Eng 3:421–457

    Article  CAS  PubMed  Google Scholar 

  10. Redaelli A, Boschetti F, Inzoli F (1997) The assignment of velocity profiles in finite element simulations of pulsatile flow in arteries. Comput Biol Med 27(3):233–247

    Article  CAS  PubMed  Google Scholar 

  11. Varghese SS, Frankel SH (2003) Numerical modeling of pulsatile turbulent flow in stenotic vessels. J Biomech Eng 125(4):445–460

    Article  PubMed  Google Scholar 

  12. Yoganathan AP, He Z, Casey Jones S (2004) Fluid mechanics of heart valves. Annu Rev Biomed Eng 6:331–362

    Article  CAS  PubMed  Google Scholar 

  13. Wootton DM, Ku DN (1999) Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1:299–329

    Article  CAS  PubMed  Google Scholar 

  14. Sucosky P, Osorio DF, Brown JB, Neitzel GP (2004) Fluid mechanics of a spinner-flask bioreactor. Biotechnol Bioeng 85(1):34–46

    Article  CAS  PubMed  Google Scholar 

  15. Venkat RV, Stock LR, Chalmers JJ (1996) Study of hydrodynamics in microcarrier culture spinner vessels: a particle tracking velocimetry approach. Biotechnol Bioeng 49:456–466

    Article  CAS  PubMed  Google Scholar 

  16. Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38(3):543–549

    Article  PubMed  Google Scholar 

  17. Raimondi MT, Boschetti F, Falcone L, Migliavacca F, Remuzzi A, Dubini G (2004) The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Biorheology 41(3–4):401–410

    CAS  PubMed  Google Scholar 

  18. Lappa M (2005) A CFD level-set method for soft tissue growth: theory and fundamental equations. J Biomech 38(1):185–190

    Article  PubMed  Google Scholar 

  19. Boschetti F, Raimondi MT, Migliavacca F, Dubini G (2006) Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J Biomech 39(3):418–425

    Article  PubMed  Google Scholar 

  20. Andrade JS, Almeida MP, Filho JM, Havlin S, Suki B, Stanley HE (1997) Fluid flow through porous media: the role of stagnant zones. Phys Rev Lett 79(20):3901–3904

    Article  CAS  Google Scholar 

  21. Singh H, Teoh SH, Low HT, Hutmacher DW (2005) Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J Biotechnol 119(2):181–196

    Article  CAS  PubMed  Google Scholar 

  22. Singh H, Ang ES, Lim TT, Hutmacher DW (2007) Flow modeling in a novel non-perfusion conical bioreactor. Biotechnol Bioeng 97(5):1291–1299

    Article  CAS  PubMed  Google Scholar 

  23. Zhao F, Chella R, Ma T (2007) Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng 96(3):584–595

    Article  CAS  PubMed  Google Scholar 

  24. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–C1180

    Article  CAS  PubMed  Google Scholar 

  25. Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302–309

    Article  CAS  PubMed  Google Scholar 

  26. Ye H (2006) Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue. J Membr Sci 272:169–178

    Article  CAS  Google Scholar 

  27. Pollack SR, Meaney DF, Levine EM, Litt M, Johnston ED (2000) Numerical model and experimental validation of microcarrier motion in a rotating bioreactor. Tissue Eng 6(5):519–530

    Article  CAS  PubMed  Google Scholar 

  28. Botchwey EA, Pollack SR, Levine EM, Laurencin CT (2001) Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res 55(2):242–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bueno EM, Bilgen B, Barabino GA (2005) Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng 11(11–12):1699–1709

    Article  CAS  PubMed  Google Scholar 

  30. Bilgen B, Chang-Mateu IM, Barabino GA (2005) Characterization of mixing in a novel wavy-walled bioreactor for tissue engineering. Biotechnol Bioeng 92(7):907–919

    Article  CAS  PubMed  Google Scholar 

  31. Bilgen B, Barabino GA (2007) Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues. Biotechnol Bioeng 98(1):282–294

    Article  CAS  PubMed  Google Scholar 

  32. Dusting J, Sheridan J, Hourigan K (2006) A fluid dynamics approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94(6):1196–1208

    Article  CAS  PubMed  Google Scholar 

  33. Williams KA, Saini S, Wick TM (2002) Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 18(5):951–963

    Article  CAS  PubMed  Google Scholar 

  34. Cheng G, Youssef BB, Markenscoff P, Zygourakis K (2006) Cell population dynamics modulate the rates of tissue growth processes. Biophys J 90(3):713–724

    Article  CAS  PubMed  Google Scholar 

  35. Lee Y, Kouvroukoglou S, McIntire LV, Zygourakis K (1995) A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys J 69(4):1284–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung CA, Yang CW, Chen CW (2006) Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnol Bioeng 94(6):1138–1146

    Article  CAS  PubMed  Google Scholar 

  37. Galbusera F, Cioffi M, Raimondi MT, Pietrabissa R (2007) Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Comput Methods Biomech Biomed Eng 10(4):279–287

    Article  CAS  Google Scholar 

  38. Lemon G, King JR (2007) Multiphase modelling of cell behaviour on artificial scaffolds: effects of nutrient depletion and spatially nonuniform porosity. Math Med Biol 24(1):57–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, H., Hutmacher, D.W. (2009). Bioreactor Studies and Computational Fluid Dynamics. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_6

Download citation

Publish with us

Policies and ethics