Skip to main content

Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents

  • Chapter
Book cover Bioreactor Systems for Tissue Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 112))

In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.

Bioreactors with a pre-sterile cultivation bag made of plastic material are currently used in both development and manufacturing processes primarily operating with animal and human cells at small- and middle-volume scale. Because of their scalability, hydrodynamic expertise and the convincing results of oxygen transport efficiency studies, wave-mixed bioreactors are the most used, together with stirred bag bioreactors and static bags, which have the longest tradition.

Starting with a general overview of disposable bag bioreactors and their main applications, this chapter summarizes the working principles and engineering aspects of bag bioreactors suitable for cell expansion, formation of functional tissue and production of therapeutic agents. Furthermore, results from selected cultivation studies are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DePalma A (2006) GEN 26:60

    Google Scholar 

  2. Morrow KJ (2007) GEN 28:37

    Google Scholar 

  3. Flanagan N (2007) GEN 27:38

    Google Scholar 

  4. Eibl R, Eibl D (2006) Disposable bioreactors for pharmaceutical research and manufacturing. Proceedings 2nd international conference on bioreactor technology in cell, tissue culture and biomedical applications. Saariselkä, Finland

    Google Scholar 

  5. Eibl R, Eibl D (2007) PROCESS PharmaTEC 4:14

    Google Scholar 

  6. Stang BV, Wood PA, Reddington JJ, Reddington GM, Heidel JR (1997) Monoclonal antibody production in gas-permeable bags using serum-free media. Monoclonal antibody workshop. Baltimore, California

    Google Scholar 

  7. Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA (2005) Clin Diagn Lab Immunol 12:380

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Purdue, GF, Hunt JL, Still JM, Law EJ, Herndon DN, Goldfarb IW, Schiller WR, Hansbrough JF, Hickerson WL, Himel HN, Kealey GP, Twomey J, Missavage AE, Solem LD, Davis M, Totoritis M, Gentzkow GD (1997) J Burn Care Rehab 18:52

    Article  CAS  Google Scholar 

  9. Halberstadt, CR, Hardin R, Bezverkov K, Snyder D, Allen L, Landeen L (1994) Biotechnol Bioeng 43:740

    Article  CAS  PubMed  Google Scholar 

  10. Card, C, Smith T (2006) Application report draft — SUB050601

    Google Scholar 

  11. Thermo Fisher Scientific (2007) Application note: AN003 Rev 1

    Google Scholar 

  12. Galliher P (2007) Case study: scale up to a 1,000 L perfusion in a disposable stirred tank bioreactor. BioProduction. Berlin, Germany

    Google Scholar 

  13. Castillo J, Vanhamel S (2007) GEN 27:40

    Google Scholar 

  14. Zambaux JP (2007) How synergy answers the biotech industry needs. BioProduction 2007. Berlin, Germany

    Google Scholar 

  15. Kunas KT, Keating J (2005) Stirred tank-single-use bioreactor: comparison to traditional stirred tank bioreactor. bioLOGIC Europe, Geneva, Switzerland

    Google Scholar 

  16. Card C (2007) Large scale, animal free production of human monoclonal antibody using PERC.6 ™ cells in a disposable, stirred-tank bioreactor. 20th ESACT meeting 2007, Dresden, Germany (poster)

    Google Scholar 

  17. Zijlstra, G (2007) Scale-up of a PER.C6 ® fed-batch process in 50 and 250 L Hyclone single use bioreactors compared to 50 and 250 L stainless steel bioreactors. 20th ESACT meeting 2007, Dresden, Germany (poster)

    Google Scholar 

  18. Brecht R (2007) Disposable bioreactor technologies: challenges and trends in cGMP manufacturing. BioProduction 2007. Berlin, Germany

    Google Scholar 

  19. Ozturk SS (2007) Comparison of product quality: disposable and stainless steel bioreactor. BioProduction 2007. Berlin, Germany

    Google Scholar 

  20. Zurich University of Applied Sciences, Department for Life Sciences and Facility Management, IBT, Cell cultivation techniques and biochemical engineering (2006–2007) Protocols of experiments, unpublished

    Google Scholar 

  21. Werner S, Nägeli M (2007) BioTechnology 3:22

    Google Scholar 

  22. Amanullah A, Burden E, Jug-Dujakovic M, Mikola M, Pearre C, Herber W (2004) Development of a large-scale cell bank in cryobags for the production of biologics. http://www.wavebiotech.com/pdfs/literature/Merck_Cancun-2004.pfd. Cited November 4, 2007

  23. Cronin CN, Lim KB, Rogers J (2007) Protein Sci 16:2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fries, S, Glazomitsky K, Woods A, Forrest G, Hsu A, Olewinski R, Robinson D, Chartrain M (2005) BioProcess Int 3:36

    CAS  Google Scholar 

  25. Genzel Y, Behrendt I, Koenig S, Sann H, Reichl U (2004) Vaccine 22:2202

    Article  CAS  PubMed  Google Scholar 

  26. Genzel Y, Olmer RM, Schaefer B, Reichl U (2006) Vaccine 24:6074

    Article  CAS  PubMed  Google Scholar 

  27. Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U (2007) Vaccine 25:3987

    Article  CAS  PubMed  Google Scholar 

  28. Knevelman C, Hearle DC, Osman JJ, Khan M, Dean M, Smith M, Aiyedebinu Cheung K (2002) Characterization and operation of a disposable bioreactor as a replacement for conventional steam-in-place inoculum bioreactors for mammalian cell culture processes. 224th National Meeting of the American Chemical Society, Boston, MA; American Chemical Society, Washington DC; BIOT 210 (poster)

    Google Scholar 

  29. Matthews T, Wolk B (2005) The use of disposable technologies in antibody manufacturing processes. http://www.wavebiotech.com/pdfs/literature/IBCDisposables_2005.pdf. Cited November 4, 2007

  30. Negrete A, Kotin RM (2007) J Virol 145:155

    CAS  Google Scholar 

  31. Ohashi R, Singh V, Hammel JF (2001) Perfusion cell culture in disposable bioreactors. 17th ESACT meeting 2001, Tylösand, Sweden

    Chapter  Google Scholar 

  32. Schlaeppi JM, Henke M, Mahnke M, Hartmann S, Schmitz R, Pouliquen Y, Kerins B, Weber E, Kolbinger F, Kocher HP (2006) Protein Expr Purif 50:185

    Article  CAS  PubMed  Google Scholar 

  33. Singh V (1999) Cytotechnology 30:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slivac I, Srček VG, Radoševic K, Kmetič I, Kniewald Z (2006) J Biosci 3:363

    Article  Google Scholar 

  35. Tang YJ, Ohashi R, Hamel JP (2007) Biotechnol Prog 23:255

    Article  CAS  PubMed  Google Scholar 

  36. Weber W, Weber E, Geisse S, Memmert K (2002) Cytotechnology 38:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber W, Bacchus W, Daoud-El Baba M, Fussenegger M (2007) Nucleic Acids Res 35:e116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Weber W, Stelling J, Rimann M, Keller B, Daoud-El Baba M, Weber CC, Aubel D, Fussenegger M (2007) PNAS 104:2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hami LS, Chana H, Yuan V, Craig S (2003) BioProc J 2:23

    Article  Google Scholar 

  40. Hamis LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) Cytotherapy 6:554

    Article  CAS  Google Scholar 

  41. Levine B (2007) Making waves in cell therapy: the Wave bioreactor for the generation of adherent and non-adherent cells for clinical use. http://www.wavebiotech.com/pdf/literature/ISCT_2007_Levine_Final.pdf. Cited November 4, 2007

  42. Eibl R, Eibl D (2006) Design and use of the Wave Bioreactor for plant cell culture. In: Dutta Gupta S, Ibaraki Y (eds.) Plant tissue culture engineering, series: focus on biotechnology, vol 6. Springer, Dordrecht, p. 203

    Google Scholar 

  43. Eibl R, Eibl D, Pechmann G, Ducommun C, Lisica L, Lisica S, Blum P, Schär M, Wolfram L, Rhiel M, Emmerling M, Röll M, Lettenbauer C, Rothmaier M, Flükiger M (2003) Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil 1. KTI-Projekt 5844.2 FHS, Final Report, University of Applied Sciences Wädenswil, Switzerland, unpublished

    Google Scholar 

  44. Lisica S (2004) Energieeintrag in Wave-Bioreaktoren. Modelling approaches, University of Applied Sciences Wädenswil, Switzerland, unpublished

    Google Scholar 

  45. CeLLution Biotech BV (2007) Mass transfer in the CELL-tainer ®disposable bioreactor. http://www.cellutionbiotech.com. Cited October 20, 2007

  46. CeLLution Biotech BV (2007) Cultivation of PER.C6 ® -cells in the CELL-tainer ® disposable bioreactor. www.cellutionbiotech.com. Cited October 20, 2007

  47. CeLLution Biotech BV (2007) Cultivation of CHO-cells in the CELL-tainer ® disposable bioreactor. www.cellutionbiotech.com. Cited October 20, 2007

  48. Zijlstra G, Oosterhuis N (2007) Cultivation of PERC. 6®cells in the novel CELL-tainer™ high-performance disposable bioreactor. 20th ESACT meeting 2007, Dresden, Germany (poster)

    Google Scholar 

  49. Taylor, I (2007) The CellMaker Plus™ single-use bioreactor: a new bioreactor capable of culturing bacteria, yeast, insect and mammalian cells. Biotechnica, Hannover, Germany

    Google Scholar 

  50. Auton KA, Bick JA, Taylor IM (2007) GEN 27:42

    Google Scholar 

  51. Ratcliffe A, Niklason L (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Y Acad Sci 961:210

    Article  CAS  PubMed  Google Scholar 

  52. Nienow AW (2006) Cytotechnology 50:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin I, Wendt D, Heberer M (2004) Trends Biotechnol 22:80

    Article  CAS  PubMed  Google Scholar 

  54. Altaras GM, Eklund C, Ranucci C, Maheswari G (2007) Biotechnol Bioeng 96:999

    Article  CAS  PubMed  Google Scholar 

  55. Jenke D (2007) J Pharm Sci 96:2566

    Article  CAS  PubMed  Google Scholar 

  56. Okonkowski J, Balasubramanian U, Seamans C, Fischrogen S, Zhang J, Lachs P, Robinson D, Chartrain M (2007) J Biosci Bioeng 103:50

    Article  CAS  PubMed  Google Scholar 

  57. van Tienhoven EAE, Korbee D, Schipper L, Verharen HW, Jong De WH (2006) J Biomed Mater Res A78:175

    Article  CAS  Google Scholar 

  58. Pörtner R, Nagel-Heyer St, Goepfert C, Adamietz P, Meenen NM (2005) J Bioeng Biosci 100:235

    Article  CAS  Google Scholar 

  59. Ye H, Xia Z, Ferguson DJP, Triffitt JT, Cui Z (2007) J Mater Sci: Mater Med 18:641

    CAS  Google Scholar 

  60. Safinia L, Panoskaltsis N, Mantalaris A (2005) Haematopoietic culture systems. In: Chaudhuri JB, Al-Rubeai M (eds.) Bioreactors for tissue engineering. Springer, Dordrecht, p. 309

    Chapter  Google Scholar 

  61. Cabrita GJM, Ferreira BS, da Silva CL, Goncales R, Almeida-Porada G, Cabral JMS (2003) TIBTECH 21:233

    Article  CAS  Google Scholar 

  62. Tzanakakis ES, Verfaillie CM (2006) Advances in adult stem cell culture. In: Ozturk SS, Hu WS (eds.) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, New York, p. 693

    Google Scholar 

  63. Carswell KS, Papoutsakis ET (2000) Biotechnol Bioeng 68:328

    Article  CAS  PubMed  Google Scholar 

  64. Purdy MH, Hogan CJ, Hami L, McNiece I, Franklin W, Jones RB, Bearman SI, Berenson RI, Cagnoni BI, Heimfeld S, Shpall EJ (1995) J Hematother 4:515

    Article  CAS  PubMed  Google Scholar 

  65. Robinet E, Certoux JM, Ferrand C, Maples P, Hardwick A, Cahn JY, Reynolds CW, Jacob W, Hervé, Tiberghien P (1998) J Hematother 7:205

    Article  CAS  PubMed  Google Scholar 

  66. Andrews RG, Briddell RA, Hill R, Gough M, McNiece IK (1999) Stem Cells 17:210

    Article  CAS  PubMed  Google Scholar 

  67. CorCell Inc. (2003) Expansion of umbilical cord blood stem cells. http://www.corcell.com/healthcare/expansion.html. Cited August 30, 2008

  68. Mu LJ, Gaudernack G, Saeboe-Larssen S, Hammerstad H, Tierens A, Kvalheim G (2003) Scand J Immunol 58:578

    Article  CAS  PubMed  Google Scholar 

  69. Mu LJ, Lazarova P, Gaudernack G, Saeboe-Larssen S, Kvalheim G (2004) Int J Immunopathol Pharmacol 17:255

    Article  CAS  PubMed  Google Scholar 

  70. June CH, Ledbetter JA, Linsley PS, Thompson CB (1990) Immunol Today 11:211

    Article  CAS  PubMed  Google Scholar 

  71. Wurm FM (2004) Nat Biotechnol 22:1393

    Article  CAS  PubMed  Google Scholar 

  72. Wurm FM (2007) Novel technologies for rapid and low cost provisioning of antibodies and process details in mammalian cell culture based biomanufacturing. BioProduction, Berlin, Germany

    Google Scholar 

  73. Schwander E, Rasmusen H (2005) GEN 25:29

    Google Scholar 

  74. De Palma A (2002) GEN 22:58

    Google Scholar 

  75. Vaughn J (1999) Insect cell culture, protein expression. In: Flickinger MC, Drew SW (eds.) Encyclopedia of bioprocess technology, vol 3. Wiley & Sons, New York, p. 1444

    Google Scholar 

  76. Weber W, Fussenegger M (2005) Baculovirus-based production of biopharmaceuticals using insect cell culture processes. In: Knäblein J (ed.) Modern biopharmaceuticals. Wiley VCH, Weinheim, Germany, p. 1045

    Chapter  Google Scholar 

  77. Durocher Y, Perret S, Kamen A (2002) Nucleic Acids Res 30:e9

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wurm FM, Bernard A (1999) Curr Opin Biotechnol 313:156

    Article  Google Scholar 

  79. Haldankar R, Li D, Saremi Z, Baikalov C, Deshpande R (2006) Bioreactors Mol Biotechnol 34:191

    Article  CAS  PubMed  Google Scholar 

  80. Rios M (2006) PharmaTech 4:1

    Google Scholar 

  81. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  82. Ducos JP, Lambot C, Pétiard V (2007) Int J Dev Biol 1:1

    Google Scholar 

  83. Ducos JP, Chantanumat P, Vuong P, Lambot C, Pètiard V (2007) Acta Horticulturae 764:33

    Article  CAS  Google Scholar 

  84. Collignon F, Gelbras V, Havelange N, Drugmand JC, Debras F, Mathieu E, Halloin V, Castillo J (2007) CHO cell cultivation and antibody production in a new disposable bioreactor based on magnetic driven centrifugal pump. http://www.artelis.net Cited October 20, 2007

  85. Hallmann S, Bertelsen HP, Scheffler U, Luttmann R (2007) Einsatz von Massflow-Controllern zur Steuerung von Bioreaktionsprozessen. Biotechnica, Hannover, Germany (poster)

    Google Scholar 

  86. Mikola M, Seto J, Amanullah, A (2007) Bioprocess Biosyst Eng 30:231

    Article  CAS  PubMed  Google Scholar 

  87. Laderman K, Quezada V, Dunphy N, Anderson J, Derecho J, McMahom R, Hsu D, Couture L (2007) DNA production in the Wave Bioreactor under cGMP conditions. http://www.wavebiotech.com/pdfs/press/pDNA_Poster_COH2007.pfd. Cited November 6, 2007

  88. Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH (eds.) Plant biotechnology and transgenic plants. Marcel Dekker, New York, p. 163

    Google Scholar 

  89. Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM Piñol MT (2003) Planta Med 69: 344

    Article  PubMed  Google Scholar 

  90. Bentebibel S, Moyano E, Palazón J, Cusidó RM, Bonfill M, Eibl R, Piñol MT (2005) Biotechnol Bioeng 89:647

    Article  CAS  PubMed  Google Scholar 

  91. Girard LS, Fabis MJ, Bastin M, Courtois D, Pétiard V, Koprowski H (2006) Biochem Biophys Res Commun 345:602

    Article  CAS  PubMed  Google Scholar 

  92. Kilani J, Lebeaut JM (2006) Appl Microbiol Biotechnol 74:324

    Article  PubMed  CAS  Google Scholar 

  93. Terrier B, Courtois D, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2006) Biotechnol Bioeng 96:914

    Article  CAS  Google Scholar 

  94. Eibl R, Eibl D (2007) Phytochem Rev DOI: 10.1007/s 11101-007-9083-z

    Google Scholar 

  95. Cuperus S, Eibl R, Hühn T, Amado R (2007) BioForum Europe 6:2

    Google Scholar 

  96. Bonfill M, Bentebibel S, Moyano E, Palazón J, Cusidó RM, Eibl R, Piñol MT (2007) BIOL PLANT 51:647

    Article  CAS  Google Scholar 

  97. DÀquino R (2006) Chem Eng Prog 102:8

    Google Scholar 

  98. Houtzager E, van der Linden R, de Roo G, Huurman S, Priem P, Sijmons C (2005) BioProcess Int 3:60

    Google Scholar 

  99. Pierce LN, Sabraham PW (2004) Bioprocessing J 3:51

    Article  Google Scholar 

  100. Curtis WR (2004) United States Patent, 6,709,862 B2

    Google Scholar 

  101. Ziv M, Ronen G, Raviv M (1998) Dev Biol-Plant 34:152

    Article  Google Scholar 

  102. Harrell RC, Bienek M, Hood CF, Munilla R, Cantliffe DY (1994) Plant Cell Tissue Org Cult 39:171

    Article  Google Scholar 

  103. Fukui H, Tanaka M (1995) Plant Cell Tissue Org Cult 41:17

    Article  Google Scholar 

  104. Escalona M, Lorenzo JC, Gonzalez BL, Daquinta M, Gonzalez JL, Desjardine Y, Borroto CG (1999) Plant Cell Rep 18:743

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eibl, R., Eibl, D. (2009). Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_3

Download citation

Publish with us

Policies and ethics