Skip to main content

Fluid Dynamics in Bioreactor Design: Considerations for the Theoretical and Practical Approach

  • Chapter

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 112))

The following chapter summarizes principles of fluid dynamics in bioreactor design with a focus on mammalian cell-culture systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferzinger JH, Peri M (2002) Computational methods for fluid dynamics, 3rd edn. SpringerVerlag, Berlin Heidelberg New York

    Book  Google Scholar 

  2. Vo n Böckh P (2004) Fluidmechanik. 2. Auflage, SpringerQQQQVerlag, Berlin Heidelberg New York

    Book  Google Scholar 

  3. Gersten K (1991) Einführung in die Strömungsmechanik, 6. öberarbeitete Auflage. Herausgeber Th. Lehmann, Verlag Vieweg, Braunschweig, Wiesbaden

    Google Scholar 

  4. Nagata S (1975) MixingQQQQprinciples and applications. WileyQQQQVerlag, New York

    Google Scholar 

  5. Svensson FJE (2005) Fluid dynamics in stirred vessels — experiments and simulations of singleQQQQphase and liquidQQQQliquid systems. Chalmers University of Technology, Chalmers Reproservice, Göteburg, Sweden

    Google Scholar 

  6. Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technologies. SpringerQQQQVerlag, Berlin Heidelberg New York

    Book  Google Scholar 

  7. Ludwig A, Kretzmer G (1993) Shear stress induced variation of cell condition and productivity. J Biotechnol 27:217–223

    Article  CAS  PubMed  Google Scholar 

  8. Cherry RS (1993) Animal cells in turbulent fluids: details of the physical stimulus and the biological response. Biotechnol Adv 11:279–299

    Article  CAS  PubMed  Google Scholar 

  9. Olivier LA, Yen J, Reichert WM, Truskey GA (1999) ShortQQQQterm cell/substrate contact dynamics of subconfluent endothelial cells following exposure to laminar flow. Biotechnol Prog 15:33–42

    Article  CAS  PubMed  Google Scholar 

  10. Meier SJ, Hatton A, Wang DIC (1999) Cell death from bursting bubbles: role of cell attachment to rising bubbles in sparged reactors. Biotechnol Bioeng 62(4):468–478

    Article  CAS  PubMed  Google Scholar 

  11. Dey D, Emery AN (1999) Problems in predicting cell damage from bubble bursting. Biotechnol Bioeng. 65(2):240–245

    Article  CAS  PubMed  Google Scholar 

  12. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    Article  CAS  PubMed  Google Scholar 

  13. Baksh D, Davies JE, Zandstra PW (2003) Adult human bone marrowQQQQderived mesenchymal progenitor cells are capable of adhesionQQQQindependent survival and expansion. Exp Haematol 31(8):723–732

    Article  CAS  Google Scholar 

  14. Croughan MS, Hamel JQQQQF, Wang DIC (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–141

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen LK (1999) Bioreactors for hematopoietic cell culture. Annu Rev Biomed Eng 01:129–152

    Article  CAS  Google Scholar 

  16. Van Wezel AL (1967) Growth of cellQQQQstrains and primary cells on microQQQQcarriers in homogenous culture. Nature 216(5110):64–65

    Article  PubMed  Google Scholar 

  17. Youn BS, Sen A, Behie LA, GirgisQQQQGarbado A, Hassell JA (2006) ScaleQQQQup of breast cancer stem cell aggregate cultures to suspension bioreactors. Biotechnol Prog 22(3):801–810

    Article  CAS  PubMed  Google Scholar 

  18. VunjakQQQQNovakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofacial Res 8:209–218

    Article  Google Scholar 

  19. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055

    Article  CAS  PubMed  Google Scholar 

  20. Sikavitas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci U S A 100(25):14683–14688

    Article  CAS  Google Scholar 

  21. Wang Y, Uemura T, Dong J, Kojima H, Tanaka J, Tateishi T (2003) Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrowQQQQderived osteoblastic cells in porous ceramic materials. Tissue Eng 9(6):1205–1214

    Article  CAS  PubMed  Google Scholar 

  22. Yu X, Botchwey EA, Levine EM, Pollack SR, Laurecin CT (2004) BioreactorQQQQbased bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101(31):11203–11208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davidson KM, Sushil S, Eggleton CD, Marten MR (2003) Using computational fluid dynamics software to estimate circulation time distributions in bioreactors. Biotechnol Prog 19:1480–1486

    Article  CAS  PubMed  Google Scholar 

  24. Sucosky P, Osorio DF, Brown JB, Neitzel P (2004) Fluid mechanics of a spinnerQQQQflask bioreactor. Biotechnol Bioeng 85(1):34–46

    Article  CAS  PubMed  Google Scholar 

  25. Yu P, Lee TS, Zeng Y, Low HT (2005) Fluid dynamics of a microQQQQbioreactor for tissue engineering. Fluid Dya Mater Process 1(3):235–246

    Google Scholar 

  26. Bilgen B, Barabion GA (2007) Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues. Biotechnol Bioeng 98(1):282–294

    Article  CAS  PubMed  Google Scholar 

  27. Bueno EM, Bilgen B, Carrier RL, Barabino GA (2004) Increased rate of chondrocyte aggregation in a wavyQQQQwalled bioreactor. Biotechnol Bioeng 88(6):767–777

    Article  CAS  PubMed  Google Scholar 

  28. Chen HQQQQC, Hu YQQQQC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28:1415–1423

    Article  CAS  PubMed  Google Scholar 

  29. Wiliams C, Wick TM (2004) Perfusion bioreactor for small diameter tissueQQQQengineered arteries. Tissue Eng 10(5/6):930–941

    Article  CAS  Google Scholar 

  30. Israelowitz M, Rizvi S, von Schroeder HP, Holmes C, Gille C (2007) Laminar flow reactor. United States Patent Application, 11/895645

    Google Scholar 

  31. Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D (2005) 3QQQQD computational modelling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38:543–549

    Article  PubMed  Google Scholar 

  32. Singh H, Ang ES, Lim TT, Hutmacher DW (2007) Flow modelling in a novel nonQQQQperfusion conical bioreactor. Biotechnol Bioeng 97(5):1291–1299

    Article  CAS  PubMed  Google Scholar 

  33. Cioffi M, Boschetti F, Raimondi MT, Dubini G (2006) Modelling evaluation of the fluiddynamic microenvironment in tissue engineered constructs: a microQQQQCT based model. Biotechnol Bioeng 93(3):500–510

    Article  CAS  PubMed  Google Scholar 

  34. Chung CA, Chen CW, Chen CP, Tseng CS (2007) Enhancement of cell growth in tissue engineering constructs under direct perfusion: modelling and simulation. Biotechnol Bioeng 97(6):1603–1616

    Article  CAS  PubMed  Google Scholar 

  35. Moussy Y (2003) Convective flow through a hollow fiber bioartificial liver. Artif Organs 27(11):1041–1049

    Article  PubMed  Google Scholar 

  36. Wolfe SP, Hsu E, Reid LM, Macdonald JM (2002) A novel multiQQQQcoaxial hollow fiber bioreactor for adherent cell types. Part 1: hydrodynamic studies. Biotechnol Bioeng 77(1):83–90

    Article  CAS  PubMed  Google Scholar 

  37. Marfels G, Poyck PPC, Eloot S, Chamuleau RAFM, Verdonck PR (2006) ThreeQQQQdimensional numerical modelling and computational fluid dynamics simulations to analyze and improve oxygen availability in the AMC bioartificial liver. Ann Biomed Eng 34(11):1729–1744

    Article  Google Scholar 

  38. Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille display. Proc Natl Acad Sci U S A 101(45):15861–15866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kleis SJ, Shreck S, Nerem RM (1990) A viscous pump bioreactor. Biotechnol Bioeng 36:771–777

    Article  CAS  PubMed  Google Scholar 

  40. Begley CM, Kleis SJ (2000) The fluid dynamic and shear environment in the NASA/JSC rotatingQQQQwall perfusedQQQQvessel bioreactor. Biotechnol Bioeng 70(1):32–40

    Article  CAS  PubMed  Google Scholar 

  41. Curran SJ, Black RA (2005) Oxygen transport and cell viability in an annular flow bioreactor: comparison of laminar Coquette and TaylorQQQQVortex flow regimes. Biotechnol Bioeng 89(7):766–774

    Article  CAS  PubMed  Google Scholar 

  42. Märkl H, Pörtner R (2003) Bioreaktoren. Chemie Ingenieur Technik 75(12):1888—1889

    Article  Google Scholar 

  43. Suck K, Behr L, Fischer M, Hoffmeister H, van Griensven M, Stahl F, Scheper T, Kasper C (2007) Cultivation of MC3T3QQQQE1 cells on a newly developed material (Sponcram) using a rotating bed system bioreactor. J Biomed Mat Res A 80(2):268–275

    Article  CAS  Google Scholar 

  44. Chen HQQQQC, Lee HQQQQP, Sung MQQQQL, Liao CQQQQJ, Hu YQQQQCr(2004) A novel rotatingQQQQshaft bioreactor for twoQQQQphase cultivation of tissueQQQQengineered cartilage. Biotechnol Prog 20:1802–1809

    Article  CAS  PubMed  Google Scholar 

  45. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  PubMed  Google Scholar 

  46. Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MJ (2001) Tissue engineering of small calibre vascular grafts. Eur J Cardiothorac Surg 20:164–169

    Article  CAS  PubMed  Google Scholar 

  47. Thompson CA, ColonQQQQHernandez P, Pomerantseva I, MacNeil BD, Nasseri B, Vacanti JP, Oesterle SN (2002) A novel pulsatile, laminar flow bioreactor for the development of tissueQQQQ engineered vascular structures. Tissue Eng 8(6):1083–1088

    Article  CAS  PubMed  Google Scholar 

  48. Hildebrand DK, Wu ZJJ, Mayer JE, Sacks MS (2004) Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann Biomed Eng 32:1039–1049

    Article  PubMed  Google Scholar 

  49. Aunins JG, Brader B, Caola A, Griffiths J, Katz M, Licari P, Ram K, Ranucci CS, Zhou W (2003) Fluid mechanics, cell distribution, and environment in CellCube bioreactors. Biotechnol Prog 19(1):2–8

    Article  CAS  PubMed  Google Scholar 

  50. Watanabe S, Inagaki S, Kinouchi I, Takai H, Masuda Y, Mizuno S (2005) Hydrostatic pressure/perfusion culture system designed and validated for tissue engineering. J Biosci Bioeng 100(1):105–111

    Article  CAS  PubMed  Google Scholar 

  51. Dusting J, Sheridan J, Hourigan K (2006) A fluid dynamics approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94(6):1196–1208

    Article  CAS  PubMed  Google Scholar 

  52. Fishbane PM, Gasiorowicz S, Thornton ST (1993) Physics for scientists and engineers, 2nd edn. PrenticeQQQQHall, Inc., Upper Saddle River, New Jersey

    Google Scholar 

  53. Koynov A, Tryggvason G, Khinast JG (2007) Characterization of the localized hydrodynamic shear forces and dissolved oxygen distribution in sparged bioreactors. Biotechnol Bioeng 97(2):317–331

    Article  CAS  PubMed  Google Scholar 

  54. Navier CLMH (1822) Memoire sur les lois du mouvement des fluids. Mem. Acad. Sci. Inst. France 6: 389–440

    Google Scholar 

  55. Stokes GG (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society Vol VIII, p287

    Google Scholar 

  56. Stokes GG (1880) Mathematical and Physical Papers (reprinted from the original journals and transactions, with additional notes by the author). Cambridge at the university press, Vol I, p75–129

    Google Scholar 

  57. Hinze JO (1975) Turbulence. 2nd Edition, McGrawQQQQHill, New York, p537–566

    Google Scholar 

  58. Darcy HPG (1856) Les fontaines publiques de la ville de Dijon. Dalmont, Paris (647p)

    Google Scholar 

  59. De Pitot H (1732) Description d'une machine pour mesurer la vitesse des eaux et la sillage des vaisseaux. Memoires de l'Academie des Sciences, Paris

    Google Scholar 

  60. Prandtl L (1942) Führer durch die Strömungslehre. 1. Auflage Verlag Vieweg & Sohn,raunschweig

    Google Scholar 

  61. Prandtl L, Oertel H jr (2002) Kapitel 4: Dynamik der Flüssigkeiten und Gase, p57–176 in: Prandtl — Führer durch die Strömungslehre. Grundlagen und Phänomene. 11. überarbeitete und erweiterte Auflage, Herausgeber Oertel H jr., Verlag Vieweg, Braunschweig

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weyand, B., Israelowitz, M., von Schroeder, H.P., Vogt, P.M. (2009). Fluid Dynamics in Bioreactor Design: Considerations for the Theoretical and Practical Approach. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_13

Download citation

Publish with us

Policies and ethics