Skip to main content

Monitoring Methylation Changes in Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 104))

Abstract

Methylation of cytosines at their carbon-5 position plays an important role both during development and in tumorgenesis. The methylation occurs almost exclusively in CpG dinucleotides. While the bulk of human genomic DNA is depleted in CpG sites, there are CpG-rich stretches, so-called CpG islands, which are located in promoter regions of more than 70% of all known human genes. In normal cells, CpG islands are unmethylated, reflecting an transcriptionally active state of the respective gene. Epigenetic silencing of tumor suppressor genes by hypermethylation of CpG islands is a very early and stable characteristic of tumorigenesis. The detection of DNA methylation is based on a treatment of genomic DNA with sodium bisulfite, which converts only unmethylated cytosines to uracil, while methylated cytosines stay unaltered. This sequence conversion can be detected in the same way as a single nucleotide polymorphism. Even though different approaches have been established for analysing DNA methylation, so far detection methods that are capable of surveying the methylation status of multiple gene promoters have been restricted to a limited number of cytosines. The use of oligonucleotide microarrays permits the parallel analysis of the methylation status of individual cytosines on a genome-wide and gene-specific level. On the one hand, a hybridization-based setup is described employing microarrays that contain oligonucleotide probes of 17–25 bases in length reflecting the methylated as well as the unmethylated status of each CpG site. After hybridization of sodium bisulfite treated and fluorescently labeled targets, methylation status of individual CpG dinucleotides can be computed based on resulting signal intensities. Secondly, a microarray-based approach for detecting methylation-specific sequence polymorphisms via an on-chip enzymatic primer extension is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu CT, Morris JR (2001) Science 293:1103

    Article  CAS  Google Scholar 

  2. Peterson CL, Laniel MA (2004) Curr Biol 4:R546

    Article  CAS  Google Scholar 

  3. Paulsen M, Ferguson-Smith AC (2001) J Pathol 195:97

    Article  CAS  Google Scholar 

  4. Monk M, Boubelik M, Lehnert S (1987) Development 99:371

    CAS  Google Scholar 

  5. Rodenhiser D, Mann M (2006) CMAJ 174:341

    Google Scholar 

  6. Bird A (2002) Genes Dev 16:6

    Article  CAS  Google Scholar 

  7. Ehrlich M et al. (1982) Nucleic Acids Res 10:2709

    Article  CAS  Google Scholar 

  8. Saxonov S, Berg P, Brutlag DL (2006) Proc Natl Acad Sci USA 103:1412

    Article  CAS  Google Scholar 

  9. Jones PA, Baylin SB (2002) Nat Rev Genet 3:415

    Article  CAS  Google Scholar 

  10. Warnecke PM, Bestor TH (2000) Curr Opin Oncol 12:68

    Article  CAS  Google Scholar 

  11. Baylin SB, Hermann JG (2000) Trends Genet 16:168

    Article  CAS  Google Scholar 

  12. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Hermann JG (1999) Cancer Res 59:67

    CAS  Google Scholar 

  13. Lyko F, Brown R (2005) J Natl Cancer Inst 97:1498

    Article  CAS  Google Scholar 

  14. Cedar H, Solage G, Glaser G, Razin A (1979) Nucleic Acids Res 22:2125

    Article  Google Scholar 

  15. Yan PS, Chen C-M, Shi H, Rahmatpanah F, Wei SH, Caldwell CH, Huang TH (2001) Cancer Res 61:8375

    CAS  Google Scholar 

  16. Eick D, Fritz HJ, Doerfler W (1983) Anal Biochem 135:165

    Article  CAS  Google Scholar 

  17. Stach D, Schmitz OJ, Stilgenbauer S, Benner A, Döhner H, Wiessler M, Lyko F (2003) Nucleic Acids Res 31:e2

    Article  CAS  Google Scholar 

  18. Babinger P, Kobl I, Mages W, Schmitt R (2001) Nucleic Acids Res 29:1261

    Article  CAS  Google Scholar 

  19. Friso S, Choi SW, Dolnikowski GG, Selhub J (2002) Anal Chem 74:4526

    Article  CAS  Google Scholar 

  20. Hermann JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Proc Natl Acad Sci USA 93:9821

    Article  Google Scholar 

  21. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) Nucleic Acids Res 28:e32

    Article  CAS  Google Scholar 

  22. Cottrell SE, Distler J, Goodman NS, Mooney SH, Kluth A, Olek A, Schwope I, Tetzner R, Ziebarth H, Berlin K (2004) Nucleic Acids Res 32:e10

    Article  Google Scholar 

  23. Xiong Z, Laird PW (1997) Nucleic Acids Res 25:2532

    Article  CAS  Google Scholar 

  24. Gonzalgo ML, Jones PA (2002) Methods 27:128

    Article  CAS  Google Scholar 

  25. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) Proc Natl Acad Sci USA 89:1827

    Article  CAS  Google Scholar 

  26. Clark SJ, Harrison J, Paul CL, Frommer M (1994) Nucleic Acids Res 22:2990

    Article  CAS  Google Scholar 

  27. Uhlmann K, Brinckmann A, Toliat MR, Ritter H, Nürnberg P (2002) Electrophoresis 23:4072

    Article  CAS  Google Scholar 

  28. Colella S, Shen L, Baggerly KA, Issa J-PJ, Krahe R (2003) Biotechniques 35:146

    CAS  Google Scholar 

  29. Tost J, Dunker J, Gut IG (2003) Biotechniques 35:152

    CAS  Google Scholar 

  30. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Nature 437:376

    CAS  Google Scholar 

  31. Adorjan P, Distler J, Lipscher E, Model F, Muller J, Pelet C, Braun A, Florl AR, Gutig D, Grabs G, Howe A, Kursar M, Lesche R, Leu E, Lewin A, Maier S, Muller V, Otto T, Scholz C, Schulz WA, Seifert HH, Schwope I, Ziebarth H, Berlin K, Piepenbrock C, Olek A (2002) Nucleic Acids Res 30:e21

    Article  Google Scholar 

  32. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Genome Res 12:158

    Article  CAS  Google Scholar 

  33. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang Y, Vollmer E, Goldmann T, Seifart C, Jiang W, Barker DL, Chee MS, Floros J, Fan JB (2006) Genome Res 16:383

    Article  CAS  Google Scholar 

  34. Baum M, Bielau S, Rittner N, Schmid K, Eggelbusch K, Dahms M, Schlauersbach A, Tahedl H, Beier M, Guimil R, Scheffler M, Hermann C, Funk JM, Wixmerten A, Rebscher H, Honig M, Andreae C, Buchner D, Moschel E, Glathe A, Jager E, Thom M, Greil A, Bestvater F, Obermeier F, Burgmaier J, Thome K, Weichert S, Hein S, Binnewies T, Foitzik V, Muller M, Stahler CF, Stahler PF (2003) Nucleic Acids Res 31:e151

    Article  CAS  Google Scholar 

  35. Mund C, Beier V, Bewerunge P, Dahms M, Lyko F, Hoheisel JD (2005) Nucleic Acids Res 33:e73

    Article  Google Scholar 

  36. Pastinen T, Kurg A, Metspalu A, Peltonen L, Syvänen AC (1997) Genome Res 7:606

    CAS  Google Scholar 

  37. Beier M, Stephan A, Hoheisel JD (2001) Hel Chim Acta 84:2089

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Markus Beier and Frank Lyko for helpful discussions. Funding by the Deutsche Forschungsgemeinschaft (DFG) and the NGFN programme of the German Federal Ministry of Education and Research (BMBF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Beier .

Editor information

Harald Seitz

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beier, V., Mund, C., Hoheisel, J.D. (2006). Monitoring Methylation Changes in Cancer. In: Seitz, H. (eds) Analytics of Protein–DNA Interactions. Advances in Biochemical Engineering/Biotechnology, vol 104. Springer, Berlin, Heidelberg . https://doi.org/10.1007/10_024

Download citation

Publish with us

Policies and ethics