Skip to main content

Classical Dynamics of a Two-species Bose-Einstein Condensate in the Presence of Nonlinear Maser Processes

  • Chapter
  • First Online:
  • 1753 Accesses

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

Abstract

The stability analysis of a generalized Dicke model, in the semi-classical limit, describing the interaction of a two-species Bose-Einstein condensate driven by a quantized field in the presence of Kerr and spontaneous parametric processes is presented. The transitions from Rabi to Josephson dynamics are identified depending on the relative value of the involved parameters. Symmetry-breaking dynamics are shown for both types of coherent oscillations due to the quantized field and nonlinear optical processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  2. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  3. S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, Nature 449, 579 (2007)

    Article  ADS  Google Scholar 

  4. J.A. Dunningham, K. Burnett, M. Edwards, Phys. Rev. A 64, 015601 (2001)

    Article  ADS  Google Scholar 

  5. E. Andersson, T. Calarco, R. Folman, M. Andersson, B. Hessmo, J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002)

    Article  ADS  Google Scholar 

  6. A. Smerzi, S. Fantoni, S. Giovanazzi, S. R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  7. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)

    Article  ADS  Google Scholar 

  8. T. Zibold, E. Nicklas, C. Gross, M.K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010)

    Article  ADS  Google Scholar 

  9. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, T. Esslinger, Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  10. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272 (2007)

    Article  ADS  Google Scholar 

  11. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  12. G. Chen, Z. Chen, J.-Q. Liang, EuroPhys. Lett. 80, 40004 (2007)

    Article  ADS  Google Scholar 

  13. C. Lee, Phys. Rev. Lett. 102, 070401 (2009)

    Article  ADS  Google Scholar 

  14. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  15. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)

    Article  MathSciNet  Google Scholar 

  16. J. Vidal, G. Palacios, R. Mosseri, Phys. Rev. A 69, 022107 (2004)

    Article  ADS  Google Scholar 

  17. J. Vidal, G. Palacios, C. Aslangul, Phys. Rev. A 70, 062304 (2004)

    Article  ADS  Google Scholar 

  18. S. Morrison, A.S. Parkins, Phys. Rev. Lett. 100, 040403 (2008)

    Article  ADS  Google Scholar 

  19. J. Larson, Europhys. Lett. 90, 54001 (2010)

    Article  ADS  Google Scholar 

  20. Q.-H. Chen, T. Liu, Y.-Y. Zhang, K.-L. Wang, Phys. Rev. A 82, 053841 (2010)

    Article  ADS  Google Scholar 

  21. B. M. Rodríguez-Lara, R.-K. Lee, Phys. Rev. E 84, 016225 (2011)

    Article  ADS  Google Scholar 

  22. B.M. Rodríguez-Lara and R.-K. Lee, arXiv: 1008.2572v1 (2010)

    Google Scholar 

  23. S. Chi, T.Y. Wang, S. Wen, Phys. Rev. A 47, 3371 (1993)

    Article  ADS  Google Scholar 

  24. B. Deb, D.S. Ray, Phys. Rev. A 48, 3191 (1993)

    Article  ADS  Google Scholar 

  25. M.J. Collett, C.W. Gardiner, Phys. Rev. A 30, 1386 (1984)

    Article  ADS  Google Scholar 

  26. A. Görlitz, T.L. Gustavson, A.E. Leanhardt, R. Low, A.P. Chikkatur, S. Gupta, S. Inouye, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 090401 (2003)

    Article  Google Scholar 

  27. D.I. Tsomokos, S. Ashhab, F. Nori, Phys. Rev. A 82, 052311 (2010)

    Article  ADS  Google Scholar 

  28. I.M. Merhasin, B.A. Malomed, R. Driben, J. Phys. B: At. Mol. Opt. Phys. 38, 877 (2005)

    Article  ADS  Google Scholar 

  29. N. Dror, B.A. Malomed, J. Zeng, Phys. Rev. E 84, 046602 (2011)

    Article  ADS  Google Scholar 

  30. D.T. Son, M.A. Stephanov, Phys. Rev. A 65, 063621 (2002)

    Article  ADS  Google Scholar 

  31. S.D. Jenkins, T.A.B. Kennedy, Phys. Rev. A 68, 053607 (2003)

    Article  ADS  Google Scholar 

  32. B.M. Rodríguez-Lara, R.-K. Lee, J. Opt. Soc. Am. B 27, 2443 (2010)

    Article  Google Scholar 

  33. N.M. Bogoliubov, R.K. Bullough, J. Timonen, J. Phys. A: Math. Gen. 29, 6305 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  36. G. Nienhuis, van S.J. Enk, Phys. Scr. T 48, 87–93 (1993)

    Article  ADS  Google Scholar 

  37. F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A 6, 2211 (1972)

    Article  ADS  Google Scholar 

  38. G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Phys. Rev. A 55, 4318 (1997)

    Article  ADS  Google Scholar 

  39. A. Micheli, D. Jacksch, J. I. Cirac, P. Zoller, Phys. Rev. A 67, 013607 (2003)

    Article  ADS  Google Scholar 

  40. A. P. Hines, R. H. McKenzie, G.J. Milburn, Phys. Rev. A. 71, 042303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

B.M.R.L. is grateful for the hospitality and camaraderie of the Theoretical Optics Group at National Tsing Hua University, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Rodríguez-Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez-Lara, B., Lee, RK. (2012). Classical Dynamics of a Two-species Bose-Einstein Condensate in the Presence of Nonlinear Maser Processes. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_7

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics