Skip to main content

Introduction

  • Chapter
Body Sensor Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borkar S. Design challenges of technology scaling. IEEE Micro 1999; 19(4):23–29.

    Article  Google Scholar 

  2. Bulusu N, Jha S. Wireless sensor network systems: a systems perspective. Artech House Publishers, 2005.

    Google Scholar 

  3. Warneke B, Last M, Liebowitz B, Pister KSJ. Smart dust: communicating with a cubic-millimeter computer. Computer 2001; 34(1):44–51.

    Article  Google Scholar 

  4. Kahn JM, Katz RH, Pister KSJ. Next century challenges: mobile networking for smart dust. In: Proceedings of the International Conference on Mobile Computing and Networking, Boston, MA, 2000.

    Google Scholar 

  5. Link JR, Sailor MJ. Smart dust: self assembling, self-organizing photonic crystals of porous Si. In: Proceedings of the National Academy of Sciences 2003; 100(19):10607–10610.

    Article  Google Scholar 

  6. Culler S, Estrin D, Srivastava M. Overview of sensor networks. Computer 2004; 37(8):41–49.

    Article  Google Scholar 

  7. Sung M, Pentland A. Minimally-invasive physiological sensing for human-aware interfaces. In: Proceedings of Human-Computer Interaction International 2005.

    Google Scholar 

  8. Lo BPL, Yang GZ. Key technical challenges and current implementations of body sensor networks. In: Proceedings of the Second International Workshop on Wearable and Implantable Body Sensor Networks 2005; 1–5.

    Google Scholar 

  9. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial fibrillation (ATRIA) study. The Journal of the American Medical Association 2001; 285(18):2370–2375.

    Article  Google Scholar 

  10. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation 1998; 98(10):946–952.

    Google Scholar 

  11. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. The Journal of the American Medical Association 2003; 289(19):2560–2572.

    Article  Google Scholar 

  12. Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary, A report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee to revise the 1995 guidelines for the evaluation and management of heart failure): developed in collaboration with the International Society for Heart and Lung Transplantation; endorsed by the Heart Failure Society of America. Circulation 2001; 104(24):2996–3007.

    Article  Google Scholar 

  13. Qureshi AI, Suri MF, Kirmani JF, Divani AA, Mohammad Y. Is prehypertension a risk factor for cardiovascular diseases? Stroke 2005; 36(9):1859–1863.

    Article  Google Scholar 

  14. Brown AS. Lipid management in patients with diabetes mellitus. American Journal of Cardiology 2005; 96(4A):26–32.

    Article  Google Scholar 

  15. Maldonado M, D’Amico S, Otiniano M, Balasubramanyam A, Rodriguez L, Cuevas E. Predictors of glycaemic control in indigent patients presenting with diabetic ketoacidosis. Diabetes, Obesity and Metabolism 2005; 7(3):282–289.

    Article  Google Scholar 

  16. Rubin RR. Adherence to pharmacologic therapy in patients with type 2 diabetes mellitus. American Journal of Medicine 2005; 118(Supplement 5A):27S–34S.

    Article  Google Scholar 

  17. Allen MG. Implantable micromachined wireless pressure sensors: approach and clinical demonstration. In: Proceedings of the Second International Workshop on Wearable and Implantable Body Sensor Networks 2005; 40–43.

    Google Scholar 

  18. Butler RN. Population aging and health. British Medical Journal 1997; 315(7115):1082–1084.

    Google Scholar 

  19. Aronow WS, Ahn C. Elderly nursing home patients with congestive heart failure after myocardial infarction living in New York City have a higher prevalence of mortality in cold weather and warm weather months. Journals of Gerontology A: Biological Sciences and Medical Sciences 2004; 59(2):146–147.

    Google Scholar 

  20. Koken PJ, Piver WT, Ye F, Elixhauser A, Olsen LM, Portier CJ. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environmental Health Perspectives 2003; 111(10):1312–1317.

    Article  Google Scholar 

  21. Dishongh T, Rhodes K, Needham B. Room to room location using wearable sensors for tracking social health of elders. In: Proceedings of the Second International Workshop on Wearable and Implantable Body Sensor Networks 2005; 18–20.

    Google Scholar 

  22. Chouvarda I, Koutkias V, Malousi A, Maglaveras N. Grid-enabled biosensor networks for pervasive healthcare. Studies in Health Technology and Informatics 2005; 112:90–99.

    Google Scholar 

  23. Rubel P, Fayn J, Simon-Chautemps L, Atoui H, Ohlsson M, Telisson D, et al. New paradigms in telemedicine: ambient intelligence, wearable, pervasive and personalized. Studies in Health Technology and Informatics 2004; 108:123–132.

    Google Scholar 

  24. Wang L, Johannessen EA, Hammond PA, Cui L, Reid SW, Cooper JM, et al. A programmable microsystem using system-on-chip for real-time biotelemetry. IEEE Transactions on Biomedical Engineering 2005; 52(7):1251–1260.

    Article  Google Scholar 

  25. Jovanov E, Milenkovic A, Otto C, de Groen PC. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation 2005; 2(1):6.

    Article  Google Scholar 

  26. Vamvakaki V, Fournier D, Chaniotakis NA. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosensors and Bioelectronics 2005; 21(2):384–388.

    Article  Google Scholar 

  27. Suwansa-Ard S, Kanatharana P, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Thavarungkul P. Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosensors and Bioelectronics 2005; 21(3):445–454.

    Article  Google Scholar 

  28. Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z. Wireless sensors powered by microbial fuel cells. Environmental Science and Technology 2005; 39(13):5037–5042.

    Article  Google Scholar 

  29. Arshak A, Arshak K, Waldron D, Morris D, Korostynska O, Jafer E, et al. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract. Medical Engineering and Physics 2005; 27(5):347–356.

    Article  Google Scholar 

  30. Paradiso R, Loriga G, Taccini N. Wearable system for vital signs monitoring. Studies in Health Technology and Informatics 2004; 108:253–259.

    Google Scholar 

  31. Cardionet. http://www.cardionet.com/

    Google Scholar 

  32. Vo-Dinh T. Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics. In: Proceedings of the First International Symposium on Micro and Nano Technology, Hawaii, 2004; 1–6.

    Google Scholar 

  33. Shnayder V, Chen B, Lorincz K, Fulford-Jones TRF, Welsh M. Sensor networks for medical care. Division of Engineering and Applied Sciences, Harvard University, Technical Report, TR-08-05, 2005.

    Google Scholar 

  34. Spada C, Spera G, Riccioni M, Biancone L, Petruzziello L, Tringali A, et al. A novel diagnostic tool for detecting functional patency of the small bowel: the Given patency capsule. Endoscopy 2005; 37(9):793–800.

    Article  Google Scholar 

  35. Garg SK, Schwartz S, Edelman SV. Improved glucose excursions using an implantable real-time continuous glucose sensor in adults with type 1 diabetes. Diabetes Care 2004; 27(3):734–738.

    Article  Google Scholar 

  36. Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery-the path to physiological glucose control. Advanced Drug Delivery Reviews 2004; 56(2):125–144.

    Article  Google Scholar 

  37. Ward WK, Wood MD, Casey HM, Quinn MJ, Federiuk IF. An implantable subcutaneous glucose sensor array in ketosis-prone rats: closed loop glycemic control. Artificial Organs 2005; 29(2):131–143.

    Article  Google Scholar 

  38. Brown JQ, Srivastava R, McShane MJ. Encapsulation of glucose oxidase and an oxygen-quenched fluorophore in polyelectrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosensors and Bioelectronics 2005; 21(1):212–216.

    Article  Google Scholar 

  39. Najafi N, Ludomirsky A. Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications. Biomedical Microdevices 2004; 6(1):61–65.

    Article  Google Scholar 

  40. Richards Grayson AC, Scheidt Shawgo R, Li Y, Cima MJ. Electronic MEMS for triggered delivery. Advanced Drug Delivery Reviews 2004; 56(2):173–184.

    Article  Google Scholar 

  41. Trohman RG, Kim MH, Pinski SL. Cardiac pacing: the state of the art. Lancet 2004; 364(9446):1701–1719.

    Article  Google Scholar 

  42. National Pacemaker and ICD database. UK and Ireland. Annual Report 2000.

    Google Scholar 

  43. Parkes J, Bryant J, Milne R. Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review. Health Technology Assessment 2000; 4(26):1–69.

    Google Scholar 

  44. Turk DC. Clinical effectiveness and cost-effectiveness of treatments for patients with chronic pain. Clinical Journal of Pain 2002; 18(6):355–365.

    Article  Google Scholar 

  45. Sheldon R, Kiff ES, Clarke A, Harris ML, Hamdy S. Sacral nerve stimulation reduces corticoanal excitability in patients with faecal incontinence. British Journal of Surgery 2005; 92(11):1423–1431.

    Article  Google Scholar 

  46. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 2000; 55 (12 Supplement 6):S40–S44.

    Google Scholar 

  47. Chabardes S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disorders 2002; 4(Supplement 3):S83–S93.

    Google Scholar 

  48. Rosenow JM, Tarkin H, Zias E, Sorbera C, Mogilner A. Simultaneous use of bilateral subthalamic nucleus stimulators and an implantable cardiac defibrillator. Case report. Journal of Neurosurgery 2003; 99(1):167–169.

    Article  Google Scholar 

  49. Heinzel A, Hebling C, Muller M, Zedda M, Muller C. Fuel cells for low power applications. Journal of Power Sources 2002; 105:250–255.

    Article  Google Scholar 

  50. Dyer CK. Fuel cells for portable applications. Journal of Power Sources 2002; 106:31–34.

    Article  Google Scholar 

  51. McGrath KM, Prakash GKS, Olah GA. Direct methanol fuel cells. Journal of Industrial and Engineering Chemistry 2004; 10:1063–1080.

    Google Scholar 

  52. Shao Z, Haile SM, Ahn J, Ronney PD, Zhan Z, Barnett SA. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 2005; 435(7043):795–798.

    Article  Google Scholar 

  53. Sasaki S, Karube I. The development of microfabricated biocatalytic fuel cells. Trends in Biotechnology 1999; 17(2):50–52.

    Article  Google Scholar 

  54. Soukharev V, Mano N, Heller A. A four-electron O(2)-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. Journal of the American Chemistry Society 2004; 126(27):8368–8369.

    Article  Google Scholar 

  55. Arra S, Heinisuo S, Vanhala J. Acoustic power transmission into an implantable device. In: Proceedings of the Second International Workshop on Wearable and Implantable Body Sensor Networks 2005; 60–64.

    Google Scholar 

  56. Guyomar D, Badel A, Lefeuvre E, Richard C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2005; 52(4):584–595.

    Article  Google Scholar 

  57. Mitcheson PD, Green TC, Yeatman EM, Holms AS. Architectures for vibration-driven micropower generators. IEEE Journal of Microelectromechnical Systems 2004; 13(3):429–440.

    Article  Google Scholar 

  58. Otis B, Chee YH, Rabaey J. A 400uW Rx, 1.6mW Tx super-regenerative transceiver for wireless sensor networks. In: Proceedings of the IEEE International Solid Circuits Conference (ISSCC) 2005.

    Google Scholar 

  59. Neirynck D, Williams C, Nix AR, Beach MA. Wideband channel characterisation for body and personal area networks. In: Proceedings of the First International Workshop on Body Sensor Networks 2004.

    Google Scholar 

  60. Alomainy A, Owadally AS, Hao Y, Parini CG, Nechayev YI, Constantinou CC, et al. Body-centric WLANs for future wearable computers. In: Proceedings of the First International Workshop on Wearable and Implantable Body Sensor Networks 2004.

    Google Scholar 

  61. Zhou L, Hass ZJ. Securing ad hoc networks. IEEE Network Magazine 1999; 13(6).

    Google Scholar 

  62. Ganesan D, Govindan R, Shenker S, Estrin D. Highly-resilient, energy-efficient multipath routing in wireless sensor networks. Mobile Computing and Communication Review 2002; 1(2):28–36.

    Google Scholar 

  63. Cherukuri S, Venkatasubramanian KK, Gupta SKS. BioSec: a biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In: Proceedings of International Conference on Parallel Processing Workshops 2003; 432–439.

    Google Scholar 

  64. Tapia EM, Intille SS, Larson K. Activity recognition in the home setting using simple and ubiquitous sensors. In: Proceedings of the Second International Conference on Pervasive Computing 2004; 158–175.

    Google Scholar 

  65. Kautz H, Etziono O, Fox D, Weld D. Foundations of assisted cognition systems. Department of Computer Science and Engineering, University of Washington, CSE-020AC-01, 2003.

    Google Scholar 

  66. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering 2003; 50(6):711–723.

    Article  Google Scholar 

  67. Siuru B. Applying acoustic monitoring to medical diagnostics applications. Sensor Magazine 1997, http://www.sensorsmag.com/articles/0397/acoustic/index.htm

    Google Scholar 

  68. Liden CB, Wolowicz M, Stivoric J, Teller A, Kasabach C, Vishnubhatla S, et al. Characterization and implications of the sensors incorporated into the SenseWear armband for energy expenditure and activity detection. http://www.bodybugg.com/pdf/Sensors.pdf

    Google Scholar 

  69. Asada HH, Shaltis P, Reisner A, Rhee S, Hutchinson RC. Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Engineering in Medicine and Biology Magazine 2003; 22(3):28–40.

    Article  Google Scholar 

  70. Heller A. Drug-delivering integrated therapeutic systems. In: Proceedings of the Second International Workshop on Wearable and Implantable Body Sensor Networks 2005; 6–11.

    Google Scholar 

  71. Giorgiou J, Toumazou C. A 126 microWatt cochlear chip for a totally implantable system. IEEE Journal of Solid-State Circuits 2005; 40(2):430–443.

    Article  Google Scholar 

  72. Abidi SS, Goh A. A personalised healthcare information delivery system: pushing customised healthcare information over the WWW. Studies in Health Technology and Informatics 2000; 77:663–667.

    Google Scholar 

  73. Backadar T. Ambulatory monitoring-embeddable, wearable, ‘its all about fashion’ studies in wearable electronics. In: Proceedings of the Second International Workshop on Wearable and Implantable Body Sensor Networks 2005; 79–81.

    Google Scholar 

  74. Ellis H. Clinical anatomy: a revision andapplied anatomy for clinical students, 10th ed. Blackwell Science Inc., 2002.

    Google Scholar 

  75. Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemistry Society 2005; 127(7):2264–2271.

    Article  Google Scholar 

  76. Koh DM, Brown G, Temple L, Raja A, Toomey P, Bett N, et al. Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings—initial observations. Radiology 2004; 231(1):91–99.

    Article  Google Scholar 

  77. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials 2003; 2(9):630–638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Aziz, O., Lo, B., Darzi, A., Yang, GZ. (2006). Introduction. In: Yang, GZ. (eds) Body Sensor Networks. Springer, London. https://doi.org/10.1007/1-84628-484-8_1

Download citation

  • DOI: https://doi.org/10.1007/1-84628-484-8_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-272-0

  • Online ISBN: 978-1-84628-484-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics