Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

This chapter outlines three generic types of signatures encountered in monitoring of manufacturing process and equipment, i. e. periodic type including modulation, transient type, and dynamics changing type, and then summarizes signal processing algorithms and their suitability for various types of signatures under four categories, i. e. time domain, frequency domain, time-frequency distribution and model based methods. Additionally, decision-making strategies are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dornfeld, D. A., Lee, Y. and Chang, A., 2003, “Monitoring of Ultraprecision Machining Processes,” International Journal of Advance Manufacturing Technology, 21, pp. 571–578.

    Article  Google Scholar 

  2. Iwata, K. and Moriwaki, T., 1977, “An Application of Acoustic Emission Measurements to In-process Sensing of Tool Wear,” Annals CIRP, 26(1), pp. 21–26.

    Google Scholar 

  3. Maragos, P., Quatieri, T. F. and Kaiser, J. F., 1993, “On Amplitude and Frequency Demodulation Using Energy Operators,” IEEE Transactions on Signal Processing, 41(4), pp. 1532–1550.

    Article  MATH  Google Scholar 

  4. Li, C. J. and Wu, S. M., 1989, “On-line Detection of Localized Defects in Bearings by Pattern Recognition Analysis,” ASME J. of Engineering for Industry, 111(4), pp. 331–336.

    Google Scholar 

  5. Oppenheim, A. V. and Schafer, R. W. 1975, Digital Signal Processing, Prentice Hall, NJ.

    MATH  Google Scholar 

  6. Koh, C. K. H., Shi, J. and Williams, W., 1995, “Tonnage Signature Analysis Using the Orthogonal (Harr) Transforms,” NAMRI/SME Transactions, 23, pp. 229–234.

    Google Scholar 

  7. Li, C. J., 2001, “Diagnostics: Gear vibrations and diagnostics,” Encyclopedia of Vibration, Editors: Braun, S. G., Ewins, D. J. and Rao, S. S., Academic Press.

    Google Scholar 

  8. Choy, F. K., Braun, M. J., Polyshchuk, V., Zakrajsek, J. J., Townsend, D. P. and Handschuh, R. F., 1994, “Analytical and Experimental Vibration Analysis of a Faulty Gear System,” NASA Technical Memorandum, 1.15:106689.

    Google Scholar 

  9. Li, C. J., Ma, J., Hwang, B. and Nickerson, G. W., 1991, “Pattern Recognition Based Bicoherence Analysis of Vibrations for Bearing Condition Monitoring,” Proceedings of Symposium on Sensors, Controls and Quality Issues in Manufacturing, ASME Winter Annual Meeting, Atlanta, GA, PED-55, Edited by T. I. Liu, C. H. Meng and N. H. Chao, ASME, New York, pp. 1–11.

    Google Scholar 

  10. Capdessus, C., Sidahmed, M. and Lacoume, J. L., 2000, “Cyclostationary Processes: Application in Gear Faults Early Diagnosis,” Mechanical Systems and Signal Processing, 14(3), pp. 371–385.

    Article  Google Scholar 

  11. Grossmann, A., 1988, “Wavelet Transforms and Edge Detection”, in Stochastic Processes in Physics and Engineering, S. Albeverio et al., eds., D. Reidel Publishing Co., Dordrecht, Holland, pp. 149–157.

    Google Scholar 

  12. Choi, H. and Williams, W. J., 1989, “Improved Time-frequency Representation of Multicomponent Signals Using Exponential Kernels”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(6), pp. 862–871.

    Article  Google Scholar 

  13. Li, C. J. and Tzeng, T. C., 2000, “Muliti-Milling-Insert Wear Assessment Using Nonlinear Virtual Sensor, Time-Frequency Distribution and Neural Networks,” Mechanical Systems and Signal Processing, 14(6), pp. 945–957.

    Article  Google Scholar 

  14. Szabo, B., Wu, S. M., 1991, “On-line techniques for tool condition monitoring in milling operations”, IFAC Symposia Series-Proceedings of a Triennial World Congress, 5, pp. 59–64.

    Google Scholar 

  15. Li, C. J. and Limmer, J. D., 2000, “Model-Based Condition Index For Tracking Gear Wear and Fatigue Damage,” Wear, 241, pp. 26–32.

    Article  Google Scholar 

  16. Ma, J. and Li, C. J., 1996, “Gear Defect Detection through Model-Based Wideband Demodulation of Vibrations,” Mechanical Systems and Signal Processing, 10(5), pp. 653–665.

    Article  MathSciNet  Google Scholar 

  17. Park, S. S. and Altintas, Y., “Dynamic Compensation of Spindle Integrated Force Sensors with Kalman Filter”, ASME Journal of Dynamic Systems, Measurement and Control, in press.

    Google Scholar 

  18. Batayneh, W. M., 2005, “Beam Crack Diagnosis using Embedded Modeling”, Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York.

    Google Scholar 

  19. Li, C. J. and Lee, H., 2005, “Gear Fatigue Crack Prognosis Using Embedded Model, Gear Dynamic Model and Fracture Mechanics,” Mechanical Systems and Signal Processing, 19(4), pp. 836–846.

    Article  MathSciNet  Google Scholar 

  20. McKee, K. and Li, C. J., 2003 “Rotor Transverse Crack Detection and Diagnosis Using Embedded Modeling”, Proceedings of ASME IMECE, 3, Paper No, IMECE 43504.

    Google Scholar 

  21. Gong, L., Jwo, W. and Tang, K., 1997, “Using On-line Sensors in Statistical Process Control,” Management Science, 43(7), pp. 1017–1029.

    MATH  Google Scholar 

  22. 1997, “Tool Monitoring for the Protection and Unsupervised Operation of Machine Tools”, brochure of Nordmann Company, Köln, Germany.

    Google Scholar 

  23. Hastie, T. and Stuetzle, W., 1989, “Principal Curves,” Journal of the American Statistical Association, 84, pp. 502–516.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Jemielniak, 1999, “Commercial Tool Condition Monitoring Systems,” International Journal of Advanced Manufacturing Technology, 15, pp. 711–721.

    Article  Google Scholar 

  25. White, C., 1977, “A Markov Quality Control Process Subject to Partial Observation,” Management Science, 23, pp. 843–852.

    Article  MATH  Google Scholar 

  26. Li, C. J. and McKee, K., 2001, “Diagnostics: Bearing (Roller & Journal) Vibrations and Diagnostics,” Encyclopedia of Vibration, Editors: Braun, S. G., Ewins, D. J. and Rao, S. S., Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Li, C.J. (2006). Signal Processing in Manufacturing Monitoring. In: Wang, L., Gao, R.X. (eds) Condition Monitoring and Control for Intelligent Manufacturing. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/1-84628-269-1_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-269-1_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-268-3

  • Online ISBN: 978-1-84628-269-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics