Skip to main content

Theory of Mid-wavelength Infrared Laser Active Regions: Intrinsic Properties and Design Strategies

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. F. Chichibu, S. Nakamura, eds.: Nitride Semiconductor Blue Lasers and Light Emitting Diodes (CRC Press, 2000)

    Google Scholar 

  2. E. Bründermann: Long-Wavelength Infrared Semiconductor Lasers, chapter 6, pp. 279–350 (Wiley, New York, 2004)

    Book  Google Scholar 

  3. A. R. Beattie, P. T. Landsberg: Auger effect in semiconductors. Proc. R. Soc. London A 249, 16–29 (1959)

    Article  ADS  Google Scholar 

  4. E. O. Kane: Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261(1957)

    Article  ADS  Google Scholar 

  5. A. R. Adams: Band-structure engineering for low-threshold high-efficency semiconductor lasers. Electron. Lett. 22, 249–250 (1986)

    Article  Google Scholar 

  6. E. Yablonovitch, E. Kane: Reduction of lasing threshold current density by the lowering of valence band effective mass. J. Lightwave Technol. 4, 504–506 (1986)

    Article  ADS  Google Scholar 

  7. G. Chen, C. L. Tien, X. Wu, J. S. Smith: Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures. J. Heat Transf. 116, 325–331 (2001)

    Article  ADS  Google Scholar 

  8. T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, S. S. Pei: Thermal conductivity of InAs/AlSb superlattices. Microscale Therm. Eng. 5, 225–231 (2001)

    Article  Google Scholar 

  9. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Carlson: Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962)

    Article  ADS  Google Scholar 

  10. M. I. Nathan, W. P. Dumke, G. Burns, J. Frederick H. Dill, G. Lasher: Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1, 62–64 (1962)

    Article  ADS  Google Scholar 

  11. N. Holonyak, J. S. F. Bevacqua: Coherent (visible) light emission from Ga(As1−x Px) junctions. Appl. Phys. Lett. 1, 82–83 (1962)

    Article  ADS  Google Scholar 

  12. R. N. Hall: Injection lasers. Trans. Electron Devices 23, 700–704 (1976)

    Article  ADS  Google Scholar 

  13. I. Hayashi, M. B. Panish, P. W. Foy: A low-threshold room-temperature injection laser. J. Quant. Electron. 5, 211–212 (1969)

    Article  ADS  Google Scholar 

  14. H. Kressel, H. Nelson: Close-confinement gallium arsenide pn junction lasers with reduced optical loss at room temperature. RCA Rev. 30, 106–113 (1969)

    Google Scholar 

  15. J. T. Olesberg, M. E. Flatté, T. F. Boggess: Comparison of linewidth enhancement factors in midinfrared active regions. J. Appl. Phys. 87, 7164 (2000)

    Article  ADS  Google Scholar 

  16. G. H. B. Thompson, P. A. Kirkby: (GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement. J. Quant. Electron. 9, 311–318 (1973)

    Article  ADS  Google Scholar 

  17. G. H. B. Thompson: Physics of Semiconductor Laser Devices (Wiley, New York, 1980)

    Google Scholar 

  18. P. W. A. McIlroy, A. Kurobe, Y. Uematsu: Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers. J. Quant. Electron. 21, 1958–1963 (1985)

    Article  ADS  Google Scholar 

  19. L. A. Coldren, S. W. Corzine: Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  20. M. E. Flatté, J. T. Olesberg, C. H. Grein: Ideal performance of cascade and noncascade intersubband and interband long-wavelength semiconductor lasers. Appl. Phys. Lett. 75, 2020–2022 (1999)

    Article  ADS  Google Scholar 

  21. J. T. Olesberg, M. E. Flatté, B. J. Brown, C. H. Grein, T. C. Hasenberg, S. A. Anson, T. F. Boggess: Optimization of active regions in midinfrared lasers. Appl. Phys. Lett. 74, 188–190 (1999)

    Article  ADS  Google Scholar 

  22. J. T. Olesberg, M. E. Flatté, B. J. Brown, T. C. Hasenberg, S. A. Anson, T. F. Boggess, C. H. Grein: Comparison of mid-infrared laser diode active regions. In In-Plane Semiconductor Lasers III, volume 3628 of Proc. SPIE, pp. 148–155 (1999)

    Google Scholar 

  23. C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, T. F. Boggess: Auger recombination in narrow-gap semiconductor superlattices incorporating antimony. J. Appl. Phys. 92, 7311–7316 (2002)

    Article  ADS  Google Scholar 

  24. W.H. Lau, J. T. Olesberg, M. E. Flatté: Electron-spin decoherence in bulk and quantumwell zinc-blende semiconductors. Phys. Rev. B 64, 161301(R) (2001)

    Google Scholar 

  25. J. T. Olesberg, W. H. Lau, M. E. Flatté, C. Yu, E. Altunkaya, E. M. Shaw, T. C. Hasenberg, T. F. Boggess: Interface contributions to spin relaxation in a short-period InAs/GaSb superlattice. Phys. Rev. B 64, 201301(R) (2001)

    Google Scholar 

  26. S. A. Anson, J. T. Olesberg, M. E. Flatté, T. C. Hasenberg, T. F. Boggess: Differential gain, differential index, and linewidth enhancement factor for a 4 µm superlattice laser active layer. J. Appl. Phys. 86, 713–718 (1999)

    Article  ADS  Google Scholar 

  27. M. E. Flatté, C. H. Grein, T. C. Hasenberg, S. A. Anson, D.-J. Jang, J. T. Olesberg, T. F. Boggess: Carrier recombination rates in narrow-gap InAs/GaInSb-based superlattices. Phys. Rev. B 59, 5745–5750 (1999)

    Article  ADS  Google Scholar 

  28. D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, T. F. Boggess: Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice. Phys. Rev. B 58, 13047–13054 (1998)

    Article  ADS  Google Scholar 

  29. J. T. Olesberg, S. A. Anson, S. W. McCahon, M. E. Flatté, T. F. Boggess, D. H. Chow, T. C. Hasenberg: Experimental and theoretical density-dependent absorption spectra in (GaInSb/InAs)/AlGaSb superlattice multiple quantum wells. Appl. Phys. Lett. 72, 229–231 (1998)

    Article  ADS  Google Scholar 

  30. M. Panish, H. Casey, Jr., S. Sumski, P. Foy: Reduction of threshold current density in GaAs-AlxGa1−x As heterostructure lasers by separate optical and carrier confinement. Appl. Phys. Lett. 22, 590–591 (1973)

    Article  ADS  Google Scholar 

  31. W. T. Tsang: A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam. Appl. Phys. Lett. 39, 134–137 (1981)

    Article  ADS  Google Scholar 

  32. S. Hersee, M. Baldy, P. Assenat, B. de Cremoux, J. P. Duchemin: Low-threshold GRINSCH GaAs/GaAlAs laser structure grown by OM VPE. Electron. Lett. 18, 618–620 (1982)

    Article  Google Scholar 

  33. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho: Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  34. J. C. Garcia, E. Rosencher, P. Collot, N. Laurent, J. L. Guyaux, B. Vinter, J. Nagle: Epitaxially stacked lasers with Esaki junctions: A bipolar cascade laser. Appl. Phys. Lett. 71, 3752–3754 (1997)

    Article  ADS  Google Scholar 

  35. J. K. Kim, E. Hall, O. Sjolund, L. A. Coldren: Epitaxially-stacked multiple-active-region 1.55 µm lasers for increased differential efficiency. Appl. Phys. Lett. 74, 3251–3253 (1999)

    Article  ADS  Google Scholar 

  36. A. A. Allerman, R. M. Biefeld, S. R. Kurtz: InAsSb-based mid-infrared lasers (3.8–3.9 µm) and light-emitting diodes with AlAsSb claddings and semimetal electron injection, grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 69, 465–467(1996)

    Article  ADS  Google Scholar 

  37. J. R. Meyer, I. Vurgaftman, R. Q. Yang, L. R. Ram-Mohan: Type-II and type-I interband cascade lasers. Electron. Lett. 32, 45–46 (1996)

    Article  Google Scholar 

  38. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho: Continuous wave operation of midinfrared (7.4–8.6 µm) quantum cascade lasers up to 110 K temperature. Appl. Phys. Lett. 68, 1745–1747 (1996)

    Article  ADS  Google Scholar 

  39. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, A. Y. Cho: Quantum cascade laser: temperature dependence of the performance characteristics and high T0 operation. Appl. Phys. Lett. 65, 2901–2903 (1994)

    Article  ADS  Google Scholar 

  40. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: Vertical transition quantum cascade laser with Bragg confined excited state. Appl. Phys. Lett. 66, 538–540 (1995)

    Article  ADS  Google Scholar 

  41. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. G. Chu, A. Y. Cho: High power mid-infrared (λ ∽ 5 µm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68, 3680–3682 (1996)

    Article  ADS  Google Scholar 

  42. R. Teissier, D. Barate, A. Vicet, C. Alibert, A. N. Baranov, X. Marcadet, C. Renard, M. Garcia, C. Sirtori, D. Revin, J. Cockburn: Room temperature operation of InAs/AlSb quantum cascade lasers. Appl. Phys. Lett. 85, 167–169 (2004)

    Article  ADS  Google Scholar 

  43. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, A. Y. Cho: Short wavelength (λ ∽ 3.4 µm) quantum cascade laser based on strained compensated In-GaAs/AlInAs. Appl. Phys. Lett. 72, 680–682 (1998)

    Article  ADS  Google Scholar 

  44. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength. Appl. Phys. Lett. 66, 3242–3244 (1995)

    Article  ADS  Google Scholar 

  45. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: Long wavelength infrared (λ ≈ 11 µm) quantum cascade lasers. Appl. Phys. Lett. 69, 2810–2812 (1996)

    Article  ADS  Google Scholar 

  46. A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, J. Faist, G. Scamarcio: High-power inter-miniband lasing in intrinsic superlattices. Appl. Phys. Lett. 72, 2388–2390 (1998)

    Article  ADS  Google Scholar 

  47. C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho: High-power λ ∼ 8 µm quantum cascade lasers with near optimum performance. Appl. Phys. Lett. 72, 3130–3132 (1998)

    Article  ADS  Google Scholar 

  48. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho: Noncascaded intersubband injection lasers at λ ∼ 7.7 µm. Appl. Phys. Lett. 73, 3830–3832 (1998)

    Article  ADS  Google Scholar 

  49. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle: GaAs/AlxGa1−x As quantum cascade lasers. Appl. Phys. Lett. 73, 3486–3488 (1998)

    Article  ADS  Google Scholar 

  50. G. Scamarcio, C. Gmachl, F. Capasso, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, A. Y. Cho: Long-wavelength (λ ≈ 11 µm) interminiband Fabry-Pérot and distributed feedback quantum cascade lasers. Semicond. Sci. Technol. 13, 1333–1339 (1998)

    Article  ADS  Google Scholar 

  51. G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik: GaAs/AlGaAs superlattice quantum cascade lasers at λ ≈ 13 µm. Appl. Phys. Lett. 75, 1345–1347 (1999)

    Article  ADS  Google Scholar 

  52. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: Long wavelength superlattice quantum cascade lasers at λ ≈ 17µm. Appl. Phys. Lett. 74, 638–640 (1999)

    Article  ADS  Google Scholar 

  53. I. Melngailis: Maser action in InAs diodes. Appl. Phys. Lett. 2, 176–178 (1963)

    Article  ADS  Google Scholar 

  54. Y. W. Tung, M. L. Cohen: Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys. Rev. 180, 823–826 (1969)

    Article  ADS  Google Scholar 

  55. S. E. Kohn, P. Y. Yu, Y. Petroff, Y. R. Shen, Y. Tsang, M. L. Cohen: Electronic band structure and optical properties of PbTe, PbSe, and PbS. Phys. Rev. B 8, 1477–1488 (1973)

    Article  ADS  Google Scholar 

  56. D. L. Mitchell, R. F. Wallis: Theoretical energy-band parameters for the lead salts. Phys. Rev. 151, 581–595 (1966)

    Article  ADS  Google Scholar 

  57. P. C. Findlay, C. R. Pidgeon, R. Kotitschke, A. Hollingworth, B. N. Murdin, C. J. G. M. Langerak, A. F. G. van der Meer, C. M. Ciesla, J. Oswald, A. Homer, G. Springholz, G. Bauer: Auger recombination dynamics of lead salts under picosecond free-electronlaser excitation. Phys. Rev. B 58, 12908–12915 (1998)

    Article  ADS  Google Scholar 

  58. J. S. Blakemore: Approximations for Fermi-Dirac integrals, especially the function used to describe electron density in a semiconductor. Solid-State Electron. 25, 1067–1076 (1982)

    Article  ADS  Google Scholar 

  59. K. L. Vodopyanov, H. Graener, C. C. Phillips, T. J. Tate: Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature. Phys. Rev. B 46, 13194–13200 (1992)

    Article  ADS  Google Scholar 

  60. A. E. Bochkarev, L. M. Dolginov, A. E. Drakin, L. V. Druzhinina, P. G. Eliseev, B. N. Sverdlov: Room-temperature in GaSbAs injection-lasers at the wavelength of 1.9–2.3 µm. Sov. J. Quantum Electron. 15, 869–871 (1985)

    Article  ADS  Google Scholar 

  61. C. Caneau, A. K. Srivastava, A. G. Dentai, J. L. Zyskind, M. A. Pollack: Roomtemperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 µm. Electron. Lett. 21, 815–817 (1985)

    Article  ADS  Google Scholar 

  62. T. H. Chiu, W. T. Tsang, J. A. Ditzenberger, J. P. van der Ziel: Room-temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2 µm prepared by molecular beam epitaxy. Appl. Phys. Lett. 49, 1051–1052 (1986)

    Article  ADS  Google Scholar 

  63. C. Caneau, J. L. Zyskind, J. W. Sulhoff, T. E. Glover, J. Centanni, C. A. Burrus, A. G. Dentai, M. A. Pollack: 2.2 µm GaInAsSb/AlGaAsSb injection lasers with low threshold current density. Appl. Phys. Lett. 51, 764–766 (1987)

    Article  ADS  Google Scholar 

  64. J. L. Zyskind, J. C. Dewinter, C. A. Burrus, J. C. Centanni, A. G. Dentai, M. A. Pollack: Highly uniform, high quantum efficiency GaInAsSb/AlGaAsSb double heterostructure lasers emitting at 2.2 µm. Electron. Lett. 25, 568–570 (1989)

    Article  Google Scholar 

  65. H. K. Choi, S. J. Eglash: High-efficiency high-power GaInAsSb-AlGaAsSb doubleheterostructure lasers emitting at 2.3 µm. J. Quant. Electron. 27, 1555–1559 (1991)

    Article  ADS  Google Scholar 

  66. H. K. Choi, S. J. Eglash: Room-temperature CW operation at 2.2 µm of GaInAsSb/AlGaAsSb diode lasers grown by molecular beam epitaxy. Appl. Phys. Lett. 59, 1165–1166 (1991)

    Article  ADS  Google Scholar 

  67. H. K. Choi, S. J. Eglash: High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density. Appl. Phys. Lett. 61, 1154–1156 (1992)

    Article  ADS  Google Scholar 

  68. A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullie: Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 µm at room temperature. Electron. Lett. 32, 2279–2280 (1996)

    Article  Google Scholar 

  69. D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, G. L. Belenky: 2.3–2.7 µm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers. Photon. Technol. Lett. 11, 794–796 (1999)

    Article  ADS  Google Scholar 

  70. C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, J. Wagner: Room-temperature low-threshold low-loss continuous-wave operation of 2.26 µm GaInAsSb/AlGaAsSb quantum-well laser diodes. Appl. Phys. Lett. 77, 1581–1583 (2000)

    Article  ADS  Google Scholar 

  71. J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, W. K. Chan: Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves. Appl. Phys. Lett. 81, 3146–3148 (2002)

    Article  ADS  Google Scholar 

  72. A. Salhi, Y. Rouillard, A. Perona, P. Grech, M. Garcia, C. Sirtori: Low-threshold GaInAsSb/AlGaAsSb quantum well laser diodes emitting near 2.3 µm. Semicond. Sci. Technol. 19, 260–262 (2004)

    Article  ADS  Google Scholar 

  73. A. Salhi, Y. Rouillard, J. Angellier, M. Garcia: Very-low-threshold 2.4 µm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime. Photon. Technol. Lett. 16, 2424–2426 (2004)

    Article  ADS  Google Scholar 

  74. P. Brosson, J. Benoit, A. Joullie, B. Sermage: Analysis of threshold current density in 2.2 µm GaInAsSb/GaAlAsSb/GaSb DH lasers. Electron. Lett. 23, 417–419 (1987)

    Article  Google Scholar 

  75. A. N. Baranov, C. Fouillant, P. Grunberg, J. L. Lazzari, S. Gaillard, A. Joullie: High temperature operation of GaInAsSb/AlGaAsSb double-heterostructure lasers emitting near 2.1 µm. Appl. Phys. Lett. 65, 616–617 (1994)

    Article  ADS  Google Scholar 

  76. G. W. Turner, H. K. Choi, M. J. Manfra: Ultralow-threshold (50 A/cm−1) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm. Appl. Phys. Lett. 72, 876–878 (1998)

    Article  ADS  Google Scholar 

  77. I. Riech, M. L. Gomez-Herrera, P. Diaz, J. G. Mendoza-Alvarez, J. L. Herrera-Perez, E. Marin: Measurement of the Auger lifetime in GaInAsSb/GaSb heterostructures using the photoacoustic technique. Appl. Phys. Lett. 79, 964–966 (2001)

    Article  ADS  Google Scholar 

  78. S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, G. Nichols: Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by timeresolved photoluminescence. Appl. Phys. Lett. 83, 3317–3319 (2003)

    Article  ADS  Google Scholar 

  79. H. K. Choi, S. J. Eglash, G. W. Turner: Double-heterostructure diode lasers emitting at 3 µm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett. 64, 2474–2476 (1994)

    Article  ADS  Google Scholar 

  80. H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly: Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers. Appl. Phys. Lett. 66, 1942–1944 (1995)

    Article  ADS  Google Scholar 

  81. H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Garbuzov, S. Y. Narayan: 2.78 µm InGaAsSb/AlGaAsSb multiple quantum-well lasers with metastable InGaAsSb wells grown by molecular beam epitaxy. J. Cryst. Growth 150, 1354–1357 (1995)

    Article  ADS  Google Scholar 

  82. M. Grau, C. Lin, M.-C. Amann: Low threshold 2.72 µm GaInAsSb/ AlGaAsSb multi-plequantum-well laser. Electron. Lett. 38, 1678–1679 (2002)

    Article  Google Scholar 

  83. M. Grau, C. Lin, O. Dier, M.-C. Amann: Continuous-wave GaInAsSb/AlGaAsSb type-I double quantum well lasers for 2.6 µm wavelength. Electron. Lett. 39, 1816–1817 (2003)

    Article  Google Scholar 

  84. M. Grau, C. Lin, M.-C. Amann: Room-temperature 2.81-µm continuous-wave operation of GaInAsSb-AlGaAsSb laser. Photon. Technol. Lett. 16, 383–385 (2004)

    Article  ADS  Google Scholar 

  85. A. Salhi, Y. Rouillard, J. Angellier, P. Grech, A. Vicet: 2.61 µm GaInAsSb/AlGaAsSb type I quantum well laser diodes with low threshold. Electron. Lett. 40, 424–425 (2004)

    Article  Google Scholar 

  86. C. Lin, M. Grau, O. Dier, M.-C. Amann: Low threshold room-temperature continuouswave operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett. 84, 5088–5090 (2004)

    Article  ADS  Google Scholar 

  87. D. Garbuzov, M. Maiorov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly: Temperature dependence of continuous wave threshold current for 2.3–2.6 µm InGaAsSb/AlGaAsSb separate confinement heterostructure quantum well semiconductor diode lasers. Appl. Phys. Lett. 74, 2990–2992 (1999)

    Article  ADS  Google Scholar 

  88. G. A. Sai-Halasz, R. Tsu, L. Esaki: A new semiconductor superlattice. Appl. Phys. Lett. 30, 651–653 (1977)

    Article  ADS  Google Scholar 

  89. D. L. Smith, C. Mailhiot: Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 62, 2545–2548 (1987)

    Article  ADS  Google Scholar 

  90. C. H. Grein, P. M. Young, H. Ehrenreich: Theoretical performance of InAs/InxGa1−x Sb superlattice-based midwave infrared lasers. J. Appl. Phys. 76, 1940–1942 (1994)

    Article  ADS  Google Scholar 

  91. M. E. Flatté, C. H. Grein, H. Ehrenreich, R. H. Miles, H. Cruz: Theoretical performance limits of 2.1–4.1 µm InAs/InGaSb, HgCdTe, and InGaAsSb lasers. J. Appl. Phys. 78, 4552–4559 (1995)

    Article  ADS  Google Scholar 

  92. S. J. Eglash, H. K. Choi: InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm. Appl. Phys. Lett. 64, 833–835 (1994)

    Article  ADS  Google Scholar 

  93. D. H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y. H. Zhang, H. L. Dunlap, L. West: Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices. Appl. Phys. Lett. 67, 3700–3702 (1995)

    Article  ADS  Google Scholar 

  94. T. C. Hasenberg, D. H. Chow, A. R. Kost, R. H. Miles, L. West: Demonstration of 3.5 µm Ga1−x InxSb/InAs superlattice diode-laser. Electron. Lett. 31, 275–276 (1995)

    Article  Google Scholar 

  95. T. C. Hasenberg, R. H. Miles, A. R. Kost, L. West: Recent advances in Sb-based midwave-infrared lasers. J. Quant. Electron. 33, 1403–1406 (1997)

    Article  ADS  Google Scholar 

  96. M. E. Flatté, J. T. Olesberg, S. A. Anson, T. F. Boggess, T. C. Hasenberg, R. H. Miles, C. H. Grein: Theoretical performance of mid-infrared broken-gap multilayer superlattice lasers. Appl. Phys. Lett. 70, 3212–3214 (1997)

    Article  ADS  Google Scholar 

  97. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, L. R. Ram-Mohan: Type-II quantum-well lasers for the mid-wavelength infrared. Appl. Phys. Lett. 67, 757–759 (1995)

    Article  ADS  Google Scholar 

  98. H. K. Choi, G. W. Turner: InAsSb/InAlAsSb strained quantum-well diode lasers emitting at 3.9 µm. Appl. Phys. Lett. 67, 332–334 (1995)

    Article  ADS  Google Scholar 

  99. J. R. Lindle, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, G. W. Turner, H. K. Choi: Auger lifetime in InAs, InAsSb, and InAsSb-InAlAsSb quantum wells. Appl. Phys. Lett. 67, 3153–3155 (1995)

    Article  ADS  MATH  Google Scholar 

  100. C. H. Grein, P. M. Young, H. Ehrenreich: Minority carrier lifetimes in ideal InGaSb/InAs superlattices. Appl. Phys. Lett. 61, 2905–2907 (1992)

    Article  ADS  Google Scholar 

  101. C. H. Grein, P. M. Young, M. E. Flatté, H. Ehrenreich: Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. J. Appl. Phys. 78, 7143–7152 (1995)

    Article  ADS  Google Scholar 

  102. M. E. Flatté, C. H. Grein, H. Ehrenreich: Sensitivity of optimization of mid-infrared InAs/InGaSb laser active regions to temperature and composition variations. Appl. Phys. Lett. 72, 1424–1426 (1998)

    Article  ADS  Google Scholar 

  103. M. E. Flatté, T. C. Hasenberg, J. T. Olesberg, S. A. Anson, T. F. Boggess, C. Yan, D. L. J. McDaniel: II—V interband 5.2 µm laser operating at 185 K. Appl. Phys. Lett. 71, 3764–3766 (1997)

    Article  ADS  Google Scholar 

  104. M. E. Flatté, C. H. Grein: Auger optimization in mid-infrared lasers: the importance of final-state optimization. Optics Express 2, 131–136 (1998)

    Article  ADS  Google Scholar 

  105. J. T. Olesberg, M. E. Flatté, T. C. Hasenberg, C. H. Grein: Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures. J. Appl. Phys. 89, 3283–3289 (2001)

    Article  ADS  Google Scholar 

  106. M. E. Flatté, J. T. Olesberg, C. H. Grein: Theoretical performance of mid-infrared broken-gap multilayer superlattice lasers. In Proceedings of the 1997 MRS Fall Symposium, volume 484 of Mat. Res. Soc. Proc., pp. 71–81 (1997)

    Google Scholar 

  107. D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, S. Y. Narayan: Ultralow-loss broadened-waveguide high-power 2 µm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers. Appl. Phys. Lett. 69, 2006–2008 (1999)

    Article  ADS  Google Scholar 

  108. D. Z. Garbuzov, R. U. Martinelli, H. Lee, R. J. Menna, P. K. York, L. A. DiMarco, M. G. Harvey, R. J. Matarese, S. Y. Narayan, J. C. Connolly: 4 W quasi-continuous-wave output power from 2 µm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes. Appl. Phys. Lett. 70, 2931–2933 (1997)

    Article  ADS  Google Scholar 

  109. J. N. Schulman, T. C. McGill: Electronic properties of the AlAs-GaAs (001) interface and superlattice. Phys. Rev. B 19, 6341–6349 (1979)

    Article  ADS  Google Scholar 

  110. J. N. Schulman, T. C. McGill: The CdTe/HgTe superlattice: proposal for a new infrared material. Appl. Phys. Lett. 34, 663–665 (1979)

    Article  ADS  Google Scholar 

  111. J. N. Schulman, T. C. McGill: Complex band structure and superlattice electronic states. Phys. Rev. B 23, 4149–4155 (1981)

    Article  ADS  Google Scholar 

  112. A. Madhukar, R. N. Nucho: The electronic structure of InAs/GaSb (001) superlattices — two dimensional effects. Solid State Commun. 32, 331–336 (1979)

    Article  ADS  Google Scholar 

  113. M. Fornari, H. H. Chen, L. Fu, R. D. Graft, D. J. Lohrmann, S. Moroni, G. P. Parravicini, L. Resca, M. A. Stroscio: Electronic structure and wave functions of interface states in HgTe-CdTe quantum wells and superlattices. Phys. Rev. B 55, 16339–16348 (1997)

    Article  ADS  Google Scholar 

  114. M. Jaros, K. B. Wong, M. A. Gell: Electronic structure of GaAs-Ga1−x AlxAs quantum well and sawtooth superlattices. Phys. Rev. B 31, 1205–1207 (1985)

    Article  ADS  Google Scholar 

  115. I. Morrison, M. Jaros: Electronic and optical properties of ultrathin Si/Ge(001) superlattices. Phys. Rev. B 37, 916–921 (1988)

    Article  ADS  Google Scholar 

  116. B. M. Adderley, R. J. Turton, M. Jaros: Absorption spectra of perfect and imperfect Si/Ge superlattices. Phys. Rev. B 49, 16622–16631 (1994)

    Article  ADS  Google Scholar 

  117. H. Fu, L.-W. Wang, A. Zunger: Comparison of the k · p and the direct diagonalization approaches for describing the electronic structure of quantum dots. Appl. Phys. Lett. 71, 3433–3435 (1997)

    Article  ADS  Google Scholar 

  118. L.-W. Wang, A. Zunger: Pseudopotential-based multiband k · p method for ∼250,000-atom nanostructure systems. Phys. Rev. B 54, 11417–11435 (1996)

    Article  ADS  Google Scholar 

  119. C. Jenner, E. Corbin, B. M. Adderley, M. Jaros: InAs/Ga1−x InxSb and InAs/Al1−x GaxSb superlattices for infrared applications. Semicond. Sci. Technol. 13, 359–375 (1998)

    Article  ADS  Google Scholar 

  120. G. C. Dente, M. L. Tilton: Pseudopotential methods for superlattices: applications to mid-infrared semiconductor lasers. J. Appl. Phys. 86, 1420–1429 (1999)

    Article  ADS  Google Scholar 

  121. G. C. Dente, M. L. Tilton: Comparing pseudopotential predictions for InAs/GaSb superlattices. Phys. Rev. B 66, 165307 (2002)

    Article  ADS  Google Scholar 

  122. R. Magri, A. Zunger: Segregation effects on the optical properties of (InAs)/(GaSb) superlattices. Physica E 13, 325–328 (2002)

    Article  ADS  Google Scholar 

  123. R. Magri, A. Zunger: Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices. Phys. Rev. B 65, 165302 (2002)

    Article  ADS  Google Scholar 

  124. R. Magri, A. Zunger: Effects of interfacial atomic segregation on optical properties of InAs/GaSb superlattices. Phys. Rev. B 64, 081305 (2001)

    Article  ADS  Google Scholar 

  125. M. E. Flatté, P. M. Young, L.-H. Peng, H. Ehrenreich: k · p superlattice theory and intersubband optical transitions. Phys. Rev. B 53, 1963–1978 (1996)

    Article  ADS  Google Scholar 

  126. M. F. H. Schuurmans, G. W. ’t Hooft: Simple calculations of confinement states in a quantum well. Phys. Rev. B 31, 8041–8048 (1985)

    Article  ADS  Google Scholar 

  127. N. F. Johnson, H. Ehrenreich, P. M. Hui, P. M. Young: Electronic and optical properties of III–V and II–VI semiconductor superlattices. Phys. Rev. B 41, 3655–3669 (1990)

    Article  ADS  Google Scholar 

  128. D. L. Smith, C. Mailhiot: Theory of semiconductor superlattice electronic structure. Rev. Mod. Phys. 62, 173–234 (1990)

    Article  ADS  Google Scholar 

  129. L. R. Ram-Mohan, J. R. Meyer: Multiband finite element modeling of wave function engineered electro-optical devices. Journal of Nonlinear Optical Physics and Materials 4, 191–243 (1995)

    Article  ADS  Google Scholar 

  130. M. S. Hybertsen, M. Schlüter: Theory of optical transitions in Si/Ge(001) strained-layer superlattices. Phys. Rev. B 36, 9683–9693 (1987)

    Article  ADS  Google Scholar 

  131. A. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, G. C. Dente: Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices. J. Appl. Phys. 89, 2185–2188 (2001)

    Article  ADS  Google Scholar 

  132. W. H. Lau, M. E. Flatté: Effect of interface structure on the optical properties of InAs/GaSb laser active regions. Appl. Phys. Lett. 80, 1683–1685 (2002)

    Article  ADS  Google Scholar 

  133. P. Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer, New York, 1995)

    MATH  Google Scholar 

  134. J. R. Chelikowsky, M. L. Cohen: Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B 14,556–582 (1976)

    Article  ADS  Google Scholar 

  135. M. Cardona, F. H. Pollak: Energy-band structure of germanium and silicon. Phys. Rev. 142, 530–543 (1966)

    Article  ADS  Google Scholar 

  136. C. Mailhiot, T. C. McGill, D. L. Smith: New approach to the k · p theory of semiconductor superlattices. J. Vac. Sci. Technol. B 2, 371–375 (1984)

    Article  Google Scholar 

  137. I. Prevot, B. Vinter, F. H. Julien, F. Fossard, X. Marcadet: Experimental and theoretical investigation of interband and intersubband transitions in type-II InAs/AlSb superlattices. Phys. Rev. B 64, 195318 (2001)

    Article  ADS  Google Scholar 

  138. M. G. Burt: Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures. J. Phys. Condens. Matter 11, R53–R83 (1999)

    Article  ADS  Google Scholar 

  139. R. Kaspi, C. Moeller, A. Ongstad, M. L. Tilton, D. Gianardi, G. Dente, P. Gopaladasu: Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices. Appl. Phys. Lett. 76, 409–411 (2000)

    Article  ADS  Google Scholar 

  140. O. Krebs, P. Voisin: Giant optical anisotropy of semiconductor heterostructures with no common atom and the quantum-confined pockels effect. Phys. Rev. Lett. 77, 1829–1832 (1996)

    Article  ADS  Google Scholar 

  141. S.W. McCahon, S. A. Anson, D.-J. Jang, T. F. Boggess: Generation of 3–4 µm femtosecond pulses from a synchronously pumped, critically phase-matched KTiOPO4 optical parametric oscillator. Opt. Lett. 20, 2309–2311 (1995)

    Article  ADS  Google Scholar 

  142. S. W. McCahon, S. A. Anson, D.-J. Jang, M. E. Flatté, T. F. Boggess, D. H. Chow, T. C. Hasenberg, C. H. Grein: Carrier recombination dynamics in a GaInSb/InAs)/AlGaSb superlattice multiple quantum well. Appl. Phys. Lett. 68, 2135–2137 (1996)

    Article  ADS  Google Scholar 

  143. P. M. Young, P. M. Hui, H. Ehrenreich: Excitons and interband transitions in iii–v semiconductor superlattices. Phys. Rev. B 44, 12969–12976 (1991)

    Article  ADS  Google Scholar 

  144. W.W. Bewley, C. L. Felix, E. H. Aifer, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, H. Lee, U. Martinelli, J. C. Connolly, A. R. Sugg, G. H. Olsen, M. J. Yang, B. R. Bennett, B. V. Shanabrook: Above-room-temperature optically pumped midinfrared W lasers. Appl. Phys. Lett. 73, 3833–3835 (1998)

    Article  ADS  Google Scholar 

  145. D.-J. Jang, J. T. Olesberg, M. E. Flatté, T. F. Boggess, T. C. Hasenberg: Hot carrier dynamics in a (GaInSb/InAs)/GaInAlAsSb superlattice multiple quantum well measured with mid-wave infrared, subpicosecond photoluminescence upconversion. Appl. Phys. Lett. 70, 1125–1127 (1997)

    Article  ADS  Google Scholar 

  146. W. W. Bewley, C. L. Felix, I. Vurgaftman, D. W. Stokes, E. H. Aifer, L. J. Olafsen, J. R. Meyer, M. J. Yang, B. V. Shanabrook, H. Lee, U. Martinelli, A. R. Sugg: High-temperature continuous-wave 3–6.1 µm “W” lasers with diamond-pressure-bond heat sinking. Appl. Phys. Lett. 74, 1075–1077 (1999)

    Article  ADS  Google Scholar 

  147. W.W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, C.-H. Lin, D. Zhang, S. J. Murry, S. S. Pei, L. R. Ram-Mohan: Role of internal loss in limiting type-II mid-IR laser performance. J. Appl. Phys. 83, 2384–2391 (1998)

    Article  ADS  Google Scholar 

  148. A. Sugimura: Band-to-band Auger effect in GaSb and InAs lasers. J. Appl. Phys. 51, 4405–4411 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Olesberg, J.T., Flatté, M.E. (2006). Theory of Mid-wavelength Infrared Laser Active Regions: Intrinsic Properties and Design Strategies. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_1

Download citation

Publish with us

Policies and ethics