Skip to main content

Stem Cells as a Source for Cell Replacement in Parkinson’s Disease

  • Chapter
  • 1295 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979;177:555–560.

    Article  CAS  PubMed  Google Scholar 

  2. Brundin P, Strecker RE, Widner H, et al. Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behavior, and dopamine release. Exp Brain Res 1988;70:192–208.

    CAS  PubMed  Google Scholar 

  3. Lindvall O, Hagell P. Cell replacement therapy in human neurodegenerative disorders. Clin Neurosci Res 2002;2:86–92.

    Article  CAS  Google Scholar 

  4. Sauer H, Brundin P. Effects of cool storage on survival and function of intrastriatal ventral mesencephalic grafts. Restor Neurol Neurosci 1991;2:123–135.

    CAS  PubMed  Google Scholar 

  5. Lindvall O. Neural transplants in Parkinson’s disease. In: Dunnett SB, Bjorklund A, eds. Functional Neural Transplantation. New York: Raven; 1994:103–137.

    Google Scholar 

  6. Frodl EM, Duan WM, Sauer H, Kupsch A, Brundin P. Human embryonic dopamine neurons xenografted to the rat: effects of cryopreservation and varying regional source of donor cells on transplant survival, morphology, and function. Brain Res 1994;647:286–298.

    Article  CAS  PubMed  Google Scholar 

  7. Haque NS, LeBlanc CJ, Isacson O. Differential dissection of the rat E16 ventral mesencephalon and survival and reinnervation of the 6-OHDA-lesioned striatum by a subset of aldehyde dehydrogenase-positive TH neurons. Cell Transplant 1997;6:239–248.

    Article  CAS  PubMed  Google Scholar 

  8. Nakao N, Frodl EM, Duan WM, Widner H, Brundin P. Lazaroids improve the survival of grafted rat embryonic dopaminergic neurons. Proc Natl Acad Sci USA 1994;91:12408–12412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci 2000;3:537–544.

    Article  CAS  PubMed  Google Scholar 

  10. Okano H, Yoshizaki T, Shimazaki T, Sawamotoc K. Isolation and transplantation of dopaminergic neurons and neural stem cells. Parkinsonism Relat Disord 2002;9:23–28.

    Article  PubMed  Google Scholar 

  11. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344:710–719.

    Article  CAS  PubMed  Google Scholar 

  12. Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci USA 2002;99:1755–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olanow CW, Goetz CG, Kordower JH, et al. A doubleblind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54:403–414.

    Article  PubMed  Google Scholar 

  14. Kopin IJ. The pharmacology of Parkinson’s disease therapy: an update. Annu Rev Pharmacol Toxicol 1993;32:467–95.

    Article  Google Scholar 

  15. Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med 1998;339:1044–1053.

    Article  CAS  PubMed  Google Scholar 

  16. Freeman TB, Olanow WC, Hauser RA, et al. Human fetal transplantation. In: Germano IM, ed. Neurosurgical Treatment of Movement Disorders. Park Ridge, IL: American Association of Neurological Surgeons; 1998.

    Google Scholar 

  17. Lindvall O. Stem cells for therapy in Parkinson’s disease. Pharmacol Res 2003;47:279–287.

    Article  CAS  PubMed  Google Scholar 

  18. Chen N, Reith ME. Structure and function of the dopamine transporter. Eur J Pharmacol 2000;405:329–339.

    Article  CAS  PubMed  Google Scholar 

  19. Miller GW, Gainetdinov RR, Levey AI, Caron MG. Dopamine transporters and neuronal injury. Trends Pharmacol Sci 1999;20:424–429.

    Article  CAS  PubMed  Google Scholar 

  20. Bannon MJ. Dopamine. In: Nature Encyclopedia of Life Sciences. London: Nature Publishing Group; http://www.els.net/ [doi:10.1038/npg.els.0000279], 1998.

    Google Scholar 

  21. Sian J, Youdim MBH, Riederer P, Gerlach M. Neurotransmitters and disorders of the basal ganglia. In: Siegel GJ, Agranoff BW, Albers WR, Fisher SK, Uhler MD, eds. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 1999. Chapter 45.

    Google Scholar 

  22. Perrier AL, Studer L. Making and repairing the mammalian brain:-in vitro production of dopaminergic neurons. Semin Cell Dev Biol 2003;14:181–189.

    Article  CAS  PubMed  Google Scholar 

  23. Palkovits M, Brownstein M. Catecholamines in the central nervous system. In: Trendelenberg U, Weiner N, eds. Catecholamines II. Berlin: Springer; 1989:1–26.

    Chapter  Google Scholar 

  24. Arts MP, Groenewegen HJ, Veening JG, Cools AR. Efferent projections of the retrorubral nucleus to the substantia nigra and ventral tegmental area in cats as shown by anterograde tracing. Brain Res Bull 1996;40:219–228.

    Article  CAS  PubMed  Google Scholar 

  25. Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001;2:99–108.

    Article  CAS  PubMed  Google Scholar 

  26. Arenas E. Stem cells in the treatment of Parkinson’s disease. Brain Res 2002;57:795–808.

    CAS  Google Scholar 

  27. Taupin P, Gage FH. Adult neurogenesis and neuronal stem cells of the central nervous system in mammals. J Neurosci Res 2002;69:745–749.

    Article  CAS  PubMed  Google Scholar 

  28. Corotto FS, Henegar JA, Maruniak JA. Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 1993;149:111–114.

    Article  CAS  PubMed  Google Scholar 

  29. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neurons 1993; 11:173–189.

    Article  CAS  Google Scholar 

  30. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein S, Gage FH. Progenitor cells from human brain after death. Nature 2001;411:42–43.

    Article  CAS  PubMed  Google Scholar 

  31. Roy NS, Wang S, Jiang L, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000;3:271–277.

    Google Scholar 

  32. Armstrong RJE, Barker RA. Neurodegeneration: a failure of neuroregeneration? Lancet 2001;358:1174–1176.

    Article  CAS  PubMed  Google Scholar 

  33. Okano H. Stem cell biology of the central nervous system. J Neurosci Res 2002;69:698–707.

    Article  CAS  PubMed  Google Scholar 

  34. Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998;1:290–295.

    Article  CAS  PubMed  Google Scholar 

  35. Yan J, Studer L, McKay RD. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 2001;76:307–311.

    Article  CAS  PubMed  Google Scholar 

  36. Studer L, Csete M, Lee SH, et al. Enhanced proliferation survival and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 2000;20:7377–7383.

    CAS  PubMed  Google Scholar 

  37. Carvey PM, Ling ZD, Sortwell CE, et al. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp Neurol 2001;171:98–108.

    Article  CAS  PubMed  Google Scholar 

  38. Storch A, Paul G, Csete M, et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 2001; 170:317–325.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner J, Åkerud P, Castro DS, Holm PC, et al. Induction of midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotechnol 1999;17:653–659.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 1999,38:65–81.

    Article  CAS  PubMed  Google Scholar 

  41. Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 1999;126:4017–4026.

    CAS  PubMed  Google Scholar 

  42. Daadi MM, Weiss S. Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain. J Neurosci 1999; 19:4484–4497.

    CAS  PubMed  Google Scholar 

  43. Akerud P, Canals JM, Snyder EY, Arenas E. Neuroprotection through delivery of glial cell linederived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 2001;21:8108–8118.

    CAS  PubMed  Google Scholar 

  44. Lin L, Doherty D, Lile J, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260:1130–1132.

    Article  CAS  PubMed  Google Scholar 

  45. Yang M, Stull ND, Berk MA, Snyder EY, Iacovitti L. Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine-lesioned rat. Exp Neurol 2002; 177:50–60.

    Article  CAS  PubMed  Google Scholar 

  46. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435:406–417.

    Article  CAS  PubMed  Google Scholar 

  47. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science 1999;286:548–552.

    Article  CAS  PubMed  Google Scholar 

  48. Rietze R, Poulin P, Weiss S. Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 2000;424:397–408.

    Article  CAS  PubMed  Google Scholar 

  49. Kornack DR, Rakic P. Cell proliferation without neurogenesis in adult primate neocortex. Science 2001; 294:2127–2130.

    Article  CAS  PubMed  Google Scholar 

  50. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002;8:963–970.

    Article  CAS  PubMed  Google Scholar 

  51. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002;110:429–441.

    Article  CAS  PubMed  Google Scholar 

  52. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002;22:6639–6649.

    CAS  PubMed  Google Scholar 

  53. Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2003;100:7925–7930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2004;101:10177–10182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Levesque MF, Neuman T. Autologous transplantation of adult human neural stem cells and differentiated dopaminergic neurons for Parkinson’s disease: a one year post-operative clinical outcome. The 70th annual meeting of the American Association of Neurological Surgeons, Chicago, IL, April 2002.

    Google Scholar 

  56. Levesque MF, Neuman T. Autologous transplantation of adult human neural stem cells and differentiated dopaminergic neurons for Parkinson’s disease: long term post-operative clinical and functional metabolic results. 8th international conference on neural transplantation and repair, Keystone, CO. Exp Neurol 2002;175:425.

    Google Scholar 

  57. Evans MJ, Kaufman MH. Establishment in culture of pluripotent cells from mouse embryos. Nature 1981;5819:154–156.

    Article  Google Scholar 

  58. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc Natl Aca Sci USA 1995;92:7844–7848.

    Article  CAS  Google Scholar 

  60. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 1996;55:254–259.

    Article  CAS  PubMed  Google Scholar 

  61. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.

    Article  CAS  PubMed  Google Scholar 

  62. Suemori H, Tada T, Torii R, et al. Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 2001;222:273–279.

    Article  CAS  PubMed  Google Scholar 

  63. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18:399–404.

    Article  CAS  PubMed  Google Scholar 

  64. Deacon T, Dinsmore J, Costantini LC, Ratliff J, Isacson O. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 1998;149:28–41.

    Article  CAS  PubMed  Google Scholar 

  65. Björklund LM, Sánchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99:2344–2349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lee JY, Qu-Petersen Z, Cao B, et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 2000;150:1085–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ye WL, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998;93:755–766.

    Article  CAS  PubMed  Google Scholar 

  68. Kim JY, Koh HC, Lee JY, et al. Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression. J Neurochem 2003; 85:1443–1454.

    Article  CAS  PubMed  Google Scholar 

  69. Shim JW, Koh HC, Chang MY, et al. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J Neurosci 2004;24:843–852.

    Article  CAS  PubMed  Google Scholar 

  70. Nishimura F, Yoshikawa M, Kanda S, et al. Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells 2003;21:171–180.

    Article  PubMed  Google Scholar 

  71. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000;28:31–40.

    Article  CAS  PubMed  Google Scholar 

  72. Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 2002;99:1580–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morizane A, Takahashi J, Takagi Y, Sasai Y, Hashimoto N. Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell-derived inducing activity. J Neurosci Res 2002;69:934–939.

    Article  CAS  PubMed  Google Scholar 

  74. Ying QL, Stavridis M, Griffiths D, Li M, Smith AG. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003;21:183–186.

    Article  CAS  PubMed  Google Scholar 

  75. Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003;21:1200–1207.

    Article  CAS  PubMed  Google Scholar 

  76. Rolletschek A, Chang H, Guan K, Czyz J, Meyer M, Wobus AM. Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech Dev 2001;105:93–104.

    Article  CAS  PubMed  Google Scholar 

  77. Mizuseki K, Sakamoto T, Watanabe K, et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA 2003;100:5828–5833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 2001;172:383–397.

    Article  CAS  PubMed  Google Scholar 

  79. Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001;19:1134–1140.

    Article  CAS  PubMed  Google Scholar 

  80. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000;97:11307–11312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schuldiner M, Eiges R, Eden A, et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res 2001;913:201–205.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001;19:1129–1133.

    Article  CAS  PubMed  Google Scholar 

  83. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2001;98:10716–10721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Park S, Lee KS, Lee YJ, et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 2004;359:99–103.

    Article  CAS  PubMed  Google Scholar 

  85. Buytaert-Hoefen KA, Alvarez E, Freed CR. Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 2004;22:669–674.

    Article  CAS  PubMed  Google Scholar 

  86. Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004;101:12543–12548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khaner H, Singer O, Ben-Hur T, Reubinoff BE. Induction of differentiation of human embryonic stem cells into cultures enriched for dopaminergic neurons. ISSCR 2nd Annual Meeting, Boston, MA, 2004.

    Google Scholar 

  88. Reubinoff BE, Idelson M, Khaner H, et al. Human embryonic stem cell-derived neural progenitors correct behavioral deficits in parkinsonian rats. ISSCR 2nd Annual Meeting, Boston, MA, 2004.

    Google Scholar 

  89. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001;292:740–743.

    Article  CAS  PubMed  Google Scholar 

  90. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000;18:675–679.

    Article  CAS  PubMed  Google Scholar 

  91. Zawada WM, Cibelli JB, Choi PK, et al. Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nat Med 1998;4:569–574.

    Article  CAS  PubMed  Google Scholar 

  92. Cibelli JB, Grant KA, Chapman KB, et al. Parthenogenetic stem cells in nonhuman primates. Science 2002;295:819.

    Article  CAS  PubMed  Google Scholar 

  93. Vrana KE, Hipp JD, Goss AM, et al. Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci USA 2003;100:11911–11916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lanza RP, Cibelli JB, West MD. Prospects for the use of nuclear transfer in human transplantation. Nat Biotechnol 1999;17:1171–1174.

    Article  CAS  PubMed  Google Scholar 

  95. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976;4:267–274.

    CAS  PubMed  Google Scholar 

  96. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987;20:263–272.

    CAS  PubMed  Google Scholar 

  97. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71–74.

    Article  CAS  PubMed  Google Scholar 

  98. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–177.

    Article  CAS  PubMed  Google Scholar 

  99. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875–884.

    Article  CAS  PubMed  Google Scholar 

  100. Sanchez-Ramos JR, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247–256.

    Article  CAS  PubMed  Google Scholar 

  101. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364–370.

    Article  CAS  PubMed  Google Scholar 

  102. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 2002;96:908–917.

    Article  CAS  Google Scholar 

  103. Black I, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 2001;27:632–636.

    Article  CAS  PubMed  Google Scholar 

  104. Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 2001;282:148–152.

    Article  CAS  PubMed  Google Scholar 

  105. Kohyama J, Abe H, Shimazaki T, et al. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001;68:235–244.

    Article  CAS  PubMed  Google Scholar 

  106. Kabos P, Ehtesham M, Kabosova A, Black KL, Yu JS. Generation of neural progenitor cells from whole adult bone marrow. Exp Neurol 2002;178:288–293.

    Article  CAS  PubMed  Google Scholar 

  107. Jin KL, Mao XO, Batteur S, Sun YJ, Greenberg DA. Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Exp Neurol 2003;184:78–89.

    Article  CAS  PubMed  Google Scholar 

  108. Joannides A, Gaughwin P, Scott M, Watt S, Compston A, Chandran S. Postnatal astrocytes promote neural induction from adult human bone marrow-derived stem cells. J Hematother Stem Cell Res 2003;12:681–688.

    Article  PubMed  Google Scholar 

  109. Levy YS, Merims D, Panet H, Barhum Y, Melamed E, Offen D. Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells. J Mol Neurosci 2003;21:121–132.

    Article  CAS  PubMed  Google Scholar 

  110. Levy YS, Stroomza M, Melamed E, Offen D. Embryonic and adult stem cells as a source for cell therapy in Parkinson’s disease. J Mol Neurosci 2004;24:353–386.

    Article  CAS  PubMed  Google Scholar 

  111. Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 2003;21:437–448.

    Article  PubMed  Google Scholar 

  112. Padovan CS, Jahn K, Birnbaum T, et al. Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 2003;12:839–848.

    Article  PubMed  Google Scholar 

  113. Rismanchi N, Floyd CL, Berman RF, Lyeth BG. Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Res 2003;991:46–55.

    Article  CAS  PubMed  Google Scholar 

  114. Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004;113:1701–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hermann A, Gast R, Liebau S, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 2004;117:4411–4422.

    Article  CAS  PubMed  Google Scholar 

  116. Qian L, Saltzman WM. Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials 2004;25:1331–1337.

    Article  CAS  PubMed  Google Scholar 

  117. Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in rat model of Parkinson disease. Hum Gene Ther 1999;10:2539–2549.

    Article  CAS  PubMed  Google Scholar 

  118. Schwarz EJ, Reger RL, Alexander GM, Class R, Azizi SA, Prockop DJ. Rat marrow stromal cells rapidly transduced with a self-inactivating retrovirus synthesize L-DOPA in vitro. Gene Ther 2001;8:1214–1223.

    Article  CAS  PubMed  Google Scholar 

  119. Park KW, Eglitis MA, Mouradian MM. Protection of nigral neurons by GDNF-engineered marrow cell transplantation. Neurosci Res 2001;40:315–323.

    Article  CAS  PubMed  Google Scholar 

  120. Cheng FC, Ni DR, Wu MC, Kuo JS, Chia LG. Glial cell line-derived neurotrophic factor protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in C57BL/6 mice. Neurosci Lett 1998;252:87–90.

    Article  CAS  PubMed  Google Scholar 

  121. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 2001;316:67–70.

    Article  CAS  PubMed  Google Scholar 

  122. Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 2003;100(suppl 1):11854–11860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.

    Article  CAS  PubMed  Google Scholar 

  124. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002;30:896–904.

    Article  CAS  PubMed  Google Scholar 

  125. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615–2625.

    Article  CAS  PubMed  Google Scholar 

  126. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004;117:2971–2981.

    Article  PubMed  CAS  Google Scholar 

  127. Montero-Menei C, Tatard V, Schiller P, Menei P, Benoit Jean-Pierre, D’Ippolito G. Dopaminergic differentiation of human marrow-isolated adult multilineage inducible cells for cell therapy. 2nd Annual Meeting of ISSCR, Boston, MA, 2004.

    Google Scholar 

  128. Brazelton TR, Rossi FMV, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290:1775–1779.

    Article  CAS  PubMed  Google Scholar 

  129. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290:1779–1782.

    Article  CAS  PubMed  Google Scholar 

  130. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 2002;33:1362–1368.

    Article  PubMed  Google Scholar 

  131. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002;174:11–20.

    Article  PubMed  Google Scholar 

  132. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brain. Proc Natl Acad Sci USA 2003;100:1364–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Holden C, Vogel G. Plasticity: time for a reappraisal? Science 2002;296:2126–2129.

    Article  CAS  PubMed  Google Scholar 

  134. Lemischka I. A few thoughts about the plasticity of stem cells. Exp Hematol 2002;30:848–852.

    Article  PubMed  Google Scholar 

  135. Wurmser AE, Gage FH. Stem cells: cell fusion causes confusion. Nature 2002;416:485–487.

    Article  CAS  PubMed  Google Scholar 

  136. Cogle CR, Yachnis AT, Laywell ED, et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 2004;363:1432–1437.

    Article  CAS  PubMed  Google Scholar 

  137. Pochampally RR, Neville BT, Schwarz EJ, Li MM, Prockop DJ. Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci USA 2004;101:9282–9285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001;18:813–819.

    Article  CAS  PubMed  Google Scholar 

  139. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001;12:559–563.

    Article  CAS  PubMed  Google Scholar 

  140. Lu D, Li Y, Mahmood A, Wang L, Rafiq T, Chopp M. Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J Neurosurg 2002;97:935–940.

    Article  PubMed  Google Scholar 

  141. Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 2001;49:1196–1204.

    CAS  PubMed  Google Scholar 

  142. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 2001;189:49–57.

    Article  CAS  PubMed  Google Scholar 

  143. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001;32:1005–1011.

    Article  CAS  PubMed  Google Scholar 

  144. Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. neuroreport 2000;11:3001–3005.

    Article  CAS  PubMed  Google Scholar 

  145. Borlongan CV, Sanberg PR. Neural transplantation for treatment of Parkinson’s disease. Drug Discov Today 2002;7:674–682.

    Article  CAS  PubMed  Google Scholar 

  146. Kim JH, Auerbach JM, RodrÍguez-Gómez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002;418:50–56.

    Article  CAS  PubMed  Google Scholar 

  147. Chung S, Sonntag KC, Andersson T, et al. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 2002;216:1829–1838.

    Article  Google Scholar 

  148. Iacovitti L, Stull ND. Expression of tyrosine hydroxylase in newly differentiated neurons for a human cell line (hNT). Neuroreport 1997;8:1471–1474.

    Article  CAS  PubMed  Google Scholar 

  149. Zigova T, Willing AE, Tedesco EM, et al. Lithium chloride induces the expression of tyrosine hydroxylase in hNT neurons. Exp Neurol 1999;157:251–258.

    Article  CAS  PubMed  Google Scholar 

  150. Zigova T, Barroso LF, Willing AE, et al. Dopaminergic phenotype of hNT cells in vitro. Dev Brain Res 2000;122:87–90.

    Article  CAS  Google Scholar 

  151. Iacovitti L, Stull ND, Jin H. Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line. Brain Res 2001;912:99–104.

    Article  CAS  PubMed  Google Scholar 

  152. Stull ND, Iacovitti L. Sonic hedgehog and FGF8: inadequate signals for the differentiation of a dopamine phenotype in mouse and human neurons in culture. Exp Neurol 2001;169:36–43.

    Article  CAS  PubMed  Google Scholar 

  153. Sodja C, Fang H, Dasgupta T, Ribecco M, Walker PR, Sikorska M. Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Mol Brain Res 2002;99:83–91.

    Article  CAS  PubMed  Google Scholar 

  154. Misiuta IE, Anderson L, McGrogan MP, Sanberg PR, Willing AE, Zigova T. The transcription factor Nurr1 in human NT2 cells and hNT neurons. Dev Brain Res 2003;145:107–115.

    Article  CAS  Google Scholar 

  155. Baker KA, Hong M, Sadi D, Mendez I. Intrastriatal and intranigral grafting of hNT neurons in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 2000;162:350–360.

    Article  CAS  PubMed  Google Scholar 

  156. Yang M, Stull ND, Berk MA, Snyder EY, Iacovitti L. Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine-lesioned rat. Exp Neurol 2002;177:50–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Offen, D., Levy, Y.S., Melamed, E. (2006). Stem Cells as a Source for Cell Replacement in Parkinson’s Disease. In: Stem Cell and Gene-Based Therapy. Springer, London. https://doi.org/10.1007/1-84628-142-3_7

Download citation

  • DOI: https://doi.org/10.1007/1-84628-142-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-979-1

  • Online ISBN: 978-1-84628-142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics