Skip to main content

An Evolutionary Algorithm Based on Morphological Associative Memories for Endmember Selection in Hyperspectral Images

  • Chapter
  • 556 Accesses

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Summary

In previous works we have introduced Morphological Autoassociative Memories (MAM) as detectors of morphologically independent patterns and their application to the task of endmember determination in hyperspectral images. After shifting the hyperspectral image data to the mean and taking the signs of the resulting hyperspectral patterns, we obtain a binary representation of the image pixels. Morphologically independent binary patterns can be seen as representations of the vertices of a convex region that covers most of the data. The MAMs are used as detectors of morphologically independent binary patterns and the selected binary patterns are taken as the guides for the selection of endmembers for spectral unmixing between the image pixels. This process was defined in a greedy suboptimal fashion, whose results depend largely on the initial conditions. We define an Evolutionary Algorithm for the search of the set of endmembers based on the morphological independence condition and we compare it with a conventional Evolutionary Strategy tailored to the endmember detection task over a multispectral image.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano A., K. Matsumura, K. Itoh, Y. Ichioka, S. Yokozeki (1995) Optimization of morphological filters by learning, Optics Comm. 112: 265–270

    Google Scholar 

  2. Bäck T., H.P. Schwefel (1993) An overview of Evolution Algorithms for parameter optimization. Evolutionary Computation, 1:1–24.

    Google Scholar 

  3. Bäck T., H.P. Schwefel (1996) Evolutionary computation: An overview. IEEE ICEC’96, pp. 20–29.

    Google Scholar 

  4. Th. Bäck (1996) Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York.

    MATH  Google Scholar 

  5. Carpenter G.A., S. Grossberg, D.B. Rosen (1991) Fuzzy ART: Fast stable learning of analog patterns by an adaptive resonance system, Neural Networks, 4:759–771

    ISI  Google Scholar 

  6. Craig M., Minimum volume transformations for remotely sensed data, IEEE Trans. Geos. Rem. Sensing, 32(3):542–552.

    Google Scholar 

  7. Gader P.D., M.A. Khabou, A. Kodobobsky (2000) Morphological regularization neural networks, Pattern Recognition, 33:935–944.

    Article  ISI  Google Scholar 

  8. Goldberg D.F. (1989) Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, Reading, MA.

    Google Scholar 

  9. Graña M., B. Raducanu (2001) On the application of morphological heteroassociative neural networks. Proc. Intl. Conf. on Image Processing (ICIP), I. Pitas (ed.), pp. 501–504, Thessaloniki, Greece, October, IEEE Press.

    Google Scholar 

  10. Graña M., B. Raducanu, P. Sussner, G. Ritter (2002) On endmember detection in hyperspectral images with Morphological Associative Memories, Iberamia 2002, LNCS Springer-Verlag, in press.

    Google Scholar 

  11. Hopfield J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sciences, 79:2554–2558

    Article  MathSciNet  Google Scholar 

  12. Ifarraguerri A., C.-I Chang (1999) Multispectral and hyperspectral image analysis with convex cones, IEEE Trans. Geos. Rem. Sensing, 37(2):756–770.

    Google Scholar 

  13. Keshava N., J.F. Mustard (2002) Spectral unimixing, IEEE Signal Proc. Mag. 19(1):44–57

    Google Scholar 

  14. Kohonen T., (1972) Correlation Matrix Memory, IEEE Trans. Computers, 21:353–359.

    Article  MATH  Google Scholar 

  15. Pessoa L.F.C, P. Maragos, (1998) MRL-filters: a general class of nonlinear systems and their optimal design for image processing, IEEE Trans. on Image Processing, 7(7):966–978

    Article  Google Scholar 

  16. Pessoa L.F.C, P. Maragos (2000) Neural networks with hybrid morphological/rank/linear nodes: A unifying framework with applications to handwritten character recognition, Patt. Rec. 33:945–960

    Google Scholar 

  17. Raducanu B., M. Graña, P. Sussner (2001) Morphological neural networks for vision based self-localization. Proc. of ICRA2001, Intl. Conf. on Robotics and Automation, pp. 2059–2064, Seoul, Korea, May, IEEE Press.

    Google Scholar 

  18. Rand R.S., D.M. Keenan (2001) A Spectral Mixture Process conditioned by Gibbs-based partitioning, IEEE Trans. Geos. Rem. Sensing, 39(7):1421–1434.

    Google Scholar 

  19. Ritter G.X., J.L. Diaz-de-Leon, P. Sussner. (1999) Morphological bidirectional associative memories. Neural Networks, 12:851–867.

    Article  ISI  Google Scholar 

  20. Ritter G.X., P. Sussner, J.L. Diaz-de-Leon. (1998) Morphological associative memories. IEEE Trans. on Neural Networks, 9(2):281–292.

    Article  Google Scholar 

  21. Ritter G.X., G. Urcid, L. Iancu (2002) Reconstruction of patterns from noisy inputs using morphological associative memories, J. Math. Imag. Vision, submitted.

    Google Scholar 

  22. Ritter G.X., J.N. Wilson, Handbook of Computer Vision Algorithms in Image Algebra, CRC Press: Boca Raton, Fla.

    Google Scholar 

  23. Rizzi A.,M., F.M. Frattale Mascioli (2002) Adaptive resolution Min-Max classifiers, IEEE Trans. Neural Networks 13(2):402–414.

    Article  Google Scholar 

  24. Salembier P. (1992) Structuring element adaptation for morphological filters, J. Visual Comm. Image Repres., 3:115–136.

    Google Scholar 

  25. Sussner P. (2001) Observations on Morphological Associative Memories and the Kernel Method, Proc. IJCNN’2001, Washington, DC, July

    Google Scholar 

  26. Sussner P. (2002), Generalizing operations of binary autoassociative morphological memories using fuzzy set theory, J. Math. Imag. Vision, submitted.

    Google Scholar 

  27. Won Y., P.D. Gader, P.C. Coffield (1997) Morphological shared-weight neural network with applications to automatic target detection, IEEE Trans. Neural Networks, 8(5):1195–1203.

    Google Scholar 

  28. Yang P.F., P. Maragos, (1995) Min-max classifiers: Learnability, design and application, Patt. Rec., 28(6):879–899.

    Google Scholar 

  29. Zhang X.; C. Hang; S. Tan; PZ. Wang (1996) The min-max function differentiation and training of fuzzy neural networks, IEEE tTrans. Neural Networks 7(5):1139–1150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Graña, M., Hernandez, C., d’Anjou, A. (2005). An Evolutionary Algorithm Based on Morphological Associative Memories for Endmember Selection in Hyperspectral Images. In: Wu, X., Jain, L., Graña, M., Duro, R.J., d’Anjou, A., Wang, P.P. (eds) Information Processing with Evolutionary Algorithms. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-117-2_4

Download citation

  • DOI: https://doi.org/10.1007/1-84628-117-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-866-4

  • Online ISBN: 978-1-84628-117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics