Skip to main content

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Summary

This chapter proposes the Discrete Multi-Phase Particle Swarm Optimization (DiMuPSO) algorithm, extending the PSO approach to problems coded with discrete binary representations. The main features of DiMuPSO are in utilizing multiple groups of particles with different goals that are allowed to change with time, alternately moving toward or away from the best solutions found recently. DiMuPSO also enforces steady improvement in solution quality, accepting only moves that improve fitness. Experimental simulations show that DiMuPSO outperforms a genetic algorithm and a previous discrete version of PSO on several benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Al-kazemi and C. K. Mohan, (2002) Multi-Phase Discrete Particle Swarm Optimization, Proc. The Fourth International Workshop on Frontiers in Evolutionary Algorithms (FEA 2002).

    Google Scholar 

  2. B. Al-kazemi and C. K. Mohan, (2002) Multi-Phase Generalization of the Particle Swarm Optimization Algorithm, ” Proc. Congress on Evolutionary Computation, Honolulu, Hawaii.

    Google Scholar 

  3. P. J. Angeline, (1998) Evolutionary Optimization Versus Particle Swarm Optimization: Philosophical and Performance Differences,” Proc. Evolutionary Programming VII (EP98) LNCS 1447.

    Google Scholar 

  4. T. Bäck, G. Rudolph, and H. P. Schwefel, (1993) Evolutionary Programming and Evolution Strategies: Similarities and Differences,” Proc. 2nd Annual Conference on Evolutionary Programming, San Diego, CA.

    Google Scholar 

  5. F. van den Bergh and A.P Engelbrecht, (2001) Effects of Swarm Size on Cooperative Particle Swarm Optimizers,” Proc. GECCO 2001, San Francisco, USA.

    Google Scholar 

  6. Frans van den Bergh, (2001) An Analysis of Particle Swarm Optimizers,” (Ph.D. Dissertation, University of Pretoria, Pretoria).

    Google Scholar 

  7. Tobias Blickle and Lothar Thiele, (1995) A Comparison of Selection Schemes used in Genetic Algorithms, Computer Engineering and Communication Networks Lab (TIK), Zurich.

    Google Scholar 

  8. Roy W. Dobbins, Russell C. Eberhart, and Patrick K. Simpson, (1996) in Computational Intelligence PC Tools: Academic Press Professional, pp. 212–226.

    Google Scholar 

  9. R. C. Eberhart and Y Shi, (1998) Comparison between Genetic Algorithms and Particle Swarm Optimization, Proc. 7th international Conference on Evolutionary Programming, San diego, California, USA.

    Google Scholar 

  10. R. C. Eberhart and J. Kennedy, (1995) A New Optimizer using Particle Swarm Theory,” Proc. the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.

    Google Scholar 

  11. D. E. Goldberg, K. Deb, and J. Horn, (1992) Massive Multimodality, Deception, and Genetic Algorithms, Parallel Problem Solving from Nature, vol. 2, pp. 37–46.

    Google Scholar 

  12. D. E. Goldberg, K. Deb, and B. Korb, (1990) Messy Genetic Algorithms Revisited: Studies in mixed size and scale, Complex Systems, vol. 4, pp. 415–444.

    Google Scholar 

  13. K. De Jong, (1975) An Analysis of the Behaviour of a Class of Genetic Adaptive Systems, (Ph.D. Dissertation, University of Michigan).

    Google Scholar 

  14. J. Kennedy, (1998) The Behavior of Particles, Proc. Evolutionary Programming VII: 7th International Conference on Evolutionary Programming, San Diego, California, USA.

    Google Scholar 

  15. J. Kennedy, (1999) Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance, Proc. Congress on Evolutionary Computation, Washington, DC, USA.

    Google Scholar 

  16. J. Kennedy and R. C. Eberhart, (1997) A Discrete Binary Version of the Particle Swarm Algorithm, Proc. Conf. on Systems, Man, and Cybernetics, Piscataway, NJ.

    Google Scholar 

  17. J. Kennedy and R. C. Eberhart, (1995) Particle Swarm Optimization, Proc. IEEE International Conference on Neural Networks.

    Google Scholar 

  18. M. Løvbjerg, T. K. Rasmussen, and T. Krink, (2001) “Hybrid Particle Swarm Optimizer with breeding and subpopulations,” Proc. Third Genetic and Evolutionary Computation Conference.

    Google Scholar 

  19. M.M. Millonas, (1994) “Swarms, Phase Transitions, and Collective Intelligence,” in Artificial Life III, S. S. i. t. S. o. Complexity, Ed.: Addison Wesley Longman, pp. 417–445.

    Google Scholar 

  20. C. K. Mohan and B. Al-kazemi, (2001) Discrete Particle Swarm Optimization, Proc. Workshop on Particle Swarm Optimization, Indianapolis, IN: Purdue School of Engineering and Technology, IUPUI, 2001.

    Google Scholar 

  21. Pablo Moscato, (1989) On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, California Institute of Technology, Pasadena, California, USA 826, 1989.

    Google Scholar 

  22. H. Mühlenbein, T. Mahnig, and A. O. Rodrigues, (1999) Schemata, Distributions and Graphical Modes in Evolutionary Optimization, Journal of Heuristics, vol. 5.

    Google Scholar 

  23. R. Patil, (1995) Intervals in Evolutionary Algorithms for Global Optimization,” Los Alamos National Laboratory Unclassified 1196.

    Google Scholar 

  24. Denis Robilliard and Cyril Fonlupt, (1999) A Shepherd and a Sheepdog to Guide Evolutionary Computation, Proc. Evolutionary Computation, France.

    Google Scholar 

  25. A. Rogers and A. Prügel-Bennett, (1999) Genetic Drift in Genetic Algorithm Selection Schemes, IEEE Transactions on Evolutionary Computation, vol. 3, pp. 298–303, 1999.

    Article  ISI  Google Scholar 

  26. F. Seredynski, P. Bouvry, and F. Arbab, (1997) Distributed Evolutionary Optimization in Manifold: the Rosenbrock”s Function Case Study, Proc. First International Workshop on Frontiers in Evolutionary Algorithms, Duke University, USA.

    Google Scholar 

  27. Y. Shi and R. C. Eberhart, (1999) Empirical study of Particle Swarm Optimization, Proc. Congress on Evolutionary Computation, Piscataway, NJ.

    Google Scholar 

  28. P. N. Suganthan, (1999) Particle Swarm Optimizer with Neighborhood Operator,” Proc. Congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center.

    Google Scholar 

  29. Deniz Yuret, (1994) From Genetic Algorithms to Efficient Optimization, (Master of Science Thesis, Massachusetts Institute Of Technology).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Al-kazemi, B., Mohan, C. (2005). Discrete Multi-Phase Particle Swarm Optimization. In: Wu, X., Jain, L., Graña, M., Duro, R.J., d’Anjou, A., Wang, P.P. (eds) Information Processing with Evolutionary Algorithms. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-117-2_20

Download citation

  • DOI: https://doi.org/10.1007/1-84628-117-2_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-866-4

  • Online ISBN: 978-1-84628-117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics