Skip to main content

Atom Probe Tomography

  • Chapter

6. Summary and Future Perspectives

Atom probe tomography is a powerful tool for the characterization of the size, morphology and composition of ultrafine features in a variety of materials. With the development of new forms of specimen preparation especially with focused ion beam milling systems, atom probe tomography should be extended to a wider variety of applications in nanotechnology.

The local electrode atom probe is a major advance in atom probe design and has greatly simplified the operation of the instrument. There is considerable scope for its continued improvement through increases in the area of analysis, mass resolution and overall data acquisition speed. New, more efficient and automated methods to analyze the three-dimensional data should be also forthcoming as the user base for atom probe tomography increases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, Kluwer Academic/Plenum Press, New York, NY (2000).

    Google Scholar 

  2. M. K. Miller, A. Cerezo, M. G. Hetherington and G. D. W. Smith, Atom Probe Field Ion Microscopy, Oxford University Press, Oxford (1996).

    Google Scholar 

  3. E. W. Müller, Z. Phys., 31 (1951) 136.

    Google Scholar 

  4. E. W. Müller, Zh. Tehk. Fiz., 17 (1936) 412.

    Google Scholar 

  5. E. W. Müller, J. A. Panitz and S. B. McLane, Rev. Sci. Instrum., 39 (1968) 83.

    Article  Google Scholar 

  6. T. T. Tsong and G. L. Kellogg, J. Appl. Phys., 51 (1980) 1184.

    Article  ADS  Google Scholar 

  7. J. A. Panitz, Rev. Sci. Instrum., 44 (1973) 1034.

    Article  CAS  ADS  Google Scholar 

  8. J. A. Panitz, Field desorption spectrometer, US Patent No. 3,868,507 (1975).

    Google Scholar 

  9. M. K. Miller, presented at the 21st Microbeam Analysis Society meeting, Albuquerque, NM, 1986.

    Google Scholar 

  10. M. K. Miller, Surf. Sci., 246 (1991) 428.

    Article  CAS  Google Scholar 

  11. M. K. Miller, Surf. Sci., 266 (1992) 494.

    Article  CAS  Google Scholar 

  12. A. Cerezo, T. J. Godfrey and G. D. W. Smith, Rev. Sci. Instrum., 59 (1988) 862.

    Article  ADS  Google Scholar 

  13. C. Martin, P. Jelinsky, M. Lampton, R. F. Malina and H. O. Auger, Rev. Sci. Instrum., 52 (1981) 1067.

    Article  CAS  ADS  Google Scholar 

  14. B. Deconihout, A. Bostel, A. Menand, J. M. Sarrau, M. Bouet, S. Chambreland and D. Blavette, Appl. Surf. Sci., 67 (1993) 444.

    Article  CAS  Google Scholar 

  15. A. Cerezo, T. J. Godfrey, J. M. Hyde, S. J. Sijbrandij and G. D. W. Smith, Appl. Surf. Sci., 76/77 (1994) 374.

    Article  Google Scholar 

  16. B. Deconihout, L. Renaud, G. Da Costa, M. Bouet, A. Bostel and D. Blavette, Ultramicroscopy, 73 (1998) 253.

    Article  CAS  Google Scholar 

  17. O. Nishikawa and M. Kimoto, Appl. Surf. Sci., 74/75 (1994) 424.

    Article  Google Scholar 

  18. T. F. Kelly, P. P. Camus, D. J. Larson, L. M. Holzmann and S. S. Bajikar, Ultramicroscopy, 62 (1996) 29.

    Article  CAS  Google Scholar 

  19. T. F. Kelly and D. J. Larson, Mater. Characterization, 44 (2000) 59.

    Article  CAS  Google Scholar 

  20. A. Cerezo, T. J. Godfrey, M. Huang and G. D. W. Smith, Rev. Sci. Instrum., 71 (2000) 3016.

    Article  CAS  ADS  Google Scholar 

  21. W. P. Poschenrieder, Int. J. Mass Spectrom. Ion Phys., 9 (1972) 83.

    Article  Google Scholar 

  22. B. A. Mamyrin, V. I. Karataev, D. V. Shmikk and V. A. Zagulin, Sov. Phys. JETP, 3 (1973) 45.

    ADS  Google Scholar 

  23. B. Deconihout, R. Saint-Martin, C. Jamot and A. Bostel, Ultramicroscopy, 95 (2003) 239.

    Article  PubMed  CAS  Google Scholar 

  24. D. J. Larson, D. T. Foord, A. K. Petford-Long, T. C. Antony, I. M. Rozdilsky, A. Cerezo and G. D. W. Smith, Ultramicroscopy, 75 (1998) 147.

    Article  CAS  Google Scholar 

  25. K. R. Kuhlman and J. Wishard, NASA Tech Brief NPO-30667, June 2003, p. 62.

    Google Scholar 

  26. W. E. Lorensen and H. E. Cline, Computer Graphics, 21(4), (1987) 163.

    Article  Google Scholar 

  27. J. M. Sassen, M. G. Hetherington, T. J. Godfrey, G. D. W. Smith, P. H. Pumphrey and K. N. Akhurst, Properties of Stainless Steel in Elevated Temperature Service, M. Prager, ed., American Society of Mechanical Engineers, New York, NY, 1987, p. 65.

    Google Scholar 

  28. T. J. Godfrey, M. G. Hetherington, J. M. Sassen and G. D. W. Smith, J. de Phys., 49-C6 (1988) 421.

    Google Scholar 

  29. M. G. Hetherington, J. M. Hyde, M. K. Miller and G. D. W. Smith, Surf. Sci., 246 (1991) 304.

    Article  CAS  Google Scholar 

  30. J. S. Langer, M. Bar-on and H. D. Miller, Phys. Rev. A, 11 (1975) 1417.

    Article  ADS  Google Scholar 

  31. B. S. Everitt, The Analysis of Contingency Tables, Chapman and Hall, London, UK, 1977.

    Google Scholar 

  32. E. Camus and C. Abromeit, J. Appl. Phys., 75 (1994) 2373.

    Article  CAS  ADS  Google Scholar 

  33. C. A. Johnson and J. H. Klotz, Technometrics, 16 (1974) 483.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. T. Tsong, S. B. McLane, M. Ahmad and C. S. Wu, J. Appl. Phys., 53 (1982) 4180.

    Article  CAS  ADS  Google Scholar 

  35. J. W. Gibbs, The Collected Works of J. Willard Gibbs, Yale University Press, New Haven, CT, 1948 Volume 1.

    Google Scholar 

  36. B. W. Krakauer and D. N. Seidman, Phys. Rev. B, 48 (1993) 6724.

    Article  CAS  ADS  Google Scholar 

  37. M. K. Miller and G. D. W. Smith, Appl. Surf. Sci., 87/88 (1995) 243.

    Article  CAS  Google Scholar 

  38. D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie, Springer-Verlag, Berlin, 1932, p. 254.

    Google Scholar 

  39. M. G. Hetherington and M. K. Miller, J. de Phys., 50-C8 (1989) 535.

    Google Scholar 

  40. G. B. Thompson, R. Banjeree, S. A. Dregia, M. K. Miller and H. L. Fraser, J. Mater. Res., 19 (2004) 1582.

    Article  CAS  Google Scholar 

  41. G. B. Thompson, H. L. Fraser and M. K. Miller, Ultramicroscopy, 100 (2004) 25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Miller, M.K. (2005). Atom Probe Tomography. In: Yao, N., Wang, Z.L. (eds) Handbook of Microscopy for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8006-9_8

Download citation

Publish with us

Policies and ethics