Skip to main content

Part of the book series: World Class Parasites ((WCPA,volume 8))

Abstract

A variety of innate immune responses may help to control early parasite replication, initiate inflammation and generate signals for T cell activation. Ultimately, elimination of infection involves CD4+ T cells that are of the Th1 (cell-mediated immunity) phenotype, but there may be a protective role for lymphocytes of the Th2 type (antibody-dependent responses). Intraepithelial lymphocytes have increased activity as a result of infection and may be important in the anti-cryptosporidial immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen M.S., C.A. Lancto, B. Walcheck, W. Layton, M.A. Jutila. 1997. Localization of α/β and γ/δ lymphocytes in Cryptosporidium parvum-infected tissues in naïve and immune calves. Infection and Immunity 65:2428–2433.

    CAS  PubMed  Google Scholar 

  • Adjei A.A., A.K. Shrestha, M. Castro, F.J. Enriquez. 2000. Adoptive transfer of immunity with intraepithelial lymphocytes in Cryptosporidium parvum-infectedsevere combined immunodeficient mice. American Journal of Medical Science. 320:304–309.

    CAS  Google Scholar 

  • Aguirre S.A., P.H. Mason, and L.E. Perryman. 1994. Susceptibility of major histocompatibility (MHC) class I-and class II-deficient mice to Cryptosporidium parvum infection. Infection and Immunity 62:697–699.

    CAS  PubMed  Google Scholar 

  • Aguirre S.A., L.E. Perryman, W.C. Davis, and T.C. McGuire 1998. IL-4 protects adult C57BL/6 mice from prolonged Cryptosporidium parvum infection: analysis of CD4+αβ+IFN-γ+ and CD4+αβ+IL-4+ lymphocytes in gut-associated lymphoid tissue during resolution of infection. Journal of Immunology 161:1891–1900.

    CAS  Google Scholar 

  • Arrowood M.J., J.M. Jaynes, and M.C. Healey. 1991. In vitro activities of lytic peptides against sporozoites of Cryptosporidium parvum. Antimicrobial Agents and Chemotherapy 35:224–227.

    CAS  PubMed  Google Scholar 

  • Blanshard C., A.M. Jackson, D.C. Shanson, N. Francis, and B.G. Gazzard. 1992. Cryptosporidiosis in HIV seropositive patients. Quarterly Journal of Medicine 85:813–823.

    CAS  PubMed  Google Scholar 

  • Bonafonte M.-T., L.M. Smith, and J.R. Mead. 2000. A 23-kDa recombinant antigen of Cryptosporidium parvum induces a cellular immune response on in vitro stimulated spleen and mesenteric lymph node cells from infected mice. Experimental Parasitology. 96:32–41.

    Article  CAS  PubMed  Google Scholar 

  • Buzoni-Gatel D., H. Debbabi, J. Menneciat, J. Martin, A.C. Lepage, J.D. Schwartzman, and L.H. Kasper. 2001. Murine ileitis after intracellular parasite infection is controlled by TGF-β-producing intraepithelial lymphocytes. Gastroenterology 120:914–924.

    CAS  PubMed  Google Scholar 

  • Chen W., J.A. Harp, and A.G. Harmsen. 1993. Requirements for CD4+ cells and gamma interferon in resolution of established Cryptosporidium parvum infection in mice. Infection and Immunity 61:3928–3932.

    CAS  PubMed  Google Scholar 

  • Chen X.-M., S. Levine, P.L. Splinter, P.S. Tietz, A.L. Ganong, C. Jobin, G.J. Gores, C.V. Paya, and N.F. LaRusso. 2001. Cryptosporidium parvum activates nuclear factor κB in biliary epithelia preventing epithelial cell apoptosis. Gastroenterology 120:1774–1783.

    Article  CAS  PubMed  Google Scholar 

  • Culshaw R.J., G.J. Bancroft, and V. McDonald. 1997. Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production. Infection and Immunity. 65:3074–3079.

    CAS  PubMed  Google Scholar 

  • Egan P.J., and S.R. Carding. 2000. Downmodulation of the inflammatory response to bacterial infection by gammadelta T cells cytotoxic for activated macrophages. Journal of Experimental Medicine. 191:2145–2158.

    Article  CAS  PubMed  Google Scholar 

  • Farthing M.J.G. 2000. Clinical aspects of human cryptosporidiosis. Contributions to Microbiology 6:50–74.

    CAS  PubMed  Google Scholar 

  • Fayer R., L. Gasbarre, P. Pasquale, A. Canals, S. Almeria, and D. Zarlenga. 1998. Cryptosporidium parvum infection in bovine neonates: dynamic clinical, parasitic and immunologic patterns. International Journal for Parasitology 28:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Gaginella T.S., J.F. Kachur, H. Tamai, and A. Keshavarzian. 1995. Reactive oxygen and nitrogen metabolites as mediators of secretory diarrhea. Gastroenterology 109:2019–2028.

    Article  CAS  PubMed  Google Scholar 

  • Gargala G., A. Delaunay, L. Favennec, P. Brasseur, and J.J. Ballet. 1997. In vitro interactions of human peripheral blood and intestinal intraepithelial lymphocytes with Cryptosporidium parvum and C. parvum permissive cell lines. Journal of Eukaryotic Microbiology 44: 71S–72S.

    CAS  PubMed  Google Scholar 

  • Garside P. 2001. A role for IL-18 in intestinal inflammation. Gut 47:6–9.

    Google Scholar 

  • Groux H., and Powrie F. 1999. Regulatory T cells and inflammatory bowel disease. Immunology Today 20:442–445.

    Article  CAS  PubMed  Google Scholar 

  • Harp J.A., Whitmire W.H., and Sacco R. 1994. In vitro proliferation by murine CD4+ cells in response to Cryptosporidium parvum antigen. Journal of Parasitology 80:67–72.

    CAS  PubMed  Google Scholar 

  • Hayward A.R., K. Chmura, and M. Cosyns. 2000. Interferon-γ is required for innate immunity to Cryptosporidium parvum in mice. Journal of Infectious Diseases 182:1001–1004.

    Article  CAS  PubMed  Google Scholar 

  • Kapel N., Y. Benhamou, M. Buraud, D. Magne, P. Opolon, and J.-G. Gobert. 1996. Kinetics of mucosal ileal gamma-interferon response during cryptosporidiosis in immunocompetent neonatal mice. Parasitology Research 82: 664–667.

    Article  CAS  PubMed  Google Scholar 

  • Kelly P., D.L. Jack, A. Naeem, B. Mandana, R.C.G. Pollok, N.J. Klein, M.W. Turner, and M.J.G. Farthing. 2000. Mannose-binding lectin is a component of innate mucosal defense against Cryptosporidium parvum. Gastroenterology 119:1236–1242.

    Article  CAS  PubMed  Google Scholar 

  • Kraehenbuhl J.-P., and M.R. Neutra. 1992. Molecular and cellular basis of immune protection of mucosal surfaces. Physiological Reviews. 72:853–879.

    CAS  PubMed  Google Scholar 

  • Lacroix S, R. Mancassola, M. Naciri, and F. Laurent. 2001. Cryptosporidium parvum-specific mucosal response in C57BL/6 mice and gamma interferon-deficient mice: role of tumor necrosis factor alpha in protection. Infection and Immunity 69:1635–1642.

    Article  CAS  PubMed  Google Scholar 

  • Lacroix-Lamande S., R. Mancassola, M. Naciri, and F. Laurent. 2002. Role of gamma interferon in chemokine expression in the ileum of mice and in a murine intestinal epithelial cell line after Cryptosporidium parvum infection. Infection and Immunity. 70:2090–2099.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, F., L. Eckmann, T.C. Savidge, C. Morgan, C. Theodos, M. Naciri, and M.F. Kagnoff. 1997. Cryptosporidium parvum infection of human intestinal epithelial cells induces polarized secretion of C-X-C chemokines. Infection and Immunity 65:5067–5073.

    CAS  PubMed  Google Scholar 

  • Laurent F, M.F. Kagnoff, T.C. Savidge, M. Naciri, and L. Eckmann. 1998. Human intestinal epithelial cells respond to Cryptosporidium parvum infection with increased prostaglandin H synthase 2 expression and prostaglandin E2 and F2a production. Infection and Immunity 66:1787–1790.

    CAS  PubMed  Google Scholar 

  • MacDonald T.T., M. Bajaj-Elliott, and S.L.F. Pender. 1999. T cells orchestrate intestinal mucosal shape and integrity. Immunology Today 20:505–510

    Article  CAS  PubMed  Google Scholar 

  • McDonald V., and G.J. Bancroft. 1994. Mechanisms of innate and acquired immunity in SCID mice infected with Cryptosporidium parvum. Parasite Immunology 16:315–320.

    CAS  PubMed  Google Scholar 

  • McDonald V., and G.J. Bancroft. 1998. Immunological control of Cryptosporidium infection. Chemical Immunology 70: 103–123.

    CAS  PubMed  Google Scholar 

  • McDonald V., H.A. Robinson, J.P. Kelly, and G.J. Bancroft. 1994. Cryptosporidium muris in adult mice: adoptive transfer of immunity and roles of CD4 versus CD8 cells. Infection and Immunity 62: 2289–2294.

    CAS  PubMed  Google Scholar 

  • McDonald V., H.A. Robinson, J.P. Kelly, and G.J. Bancroft. 1996. Immunity to Cryptosporidium muris in mice is expressed through gut CD4+ intraepithelial lymphocytes. Infection and Immunity 64: 2556–2562.

    CAS  PubMed  Google Scholar 

  • McDonald V., R. Smith, H. Robinson, and G. Bancroft. 2000. Host immune responses against Cryptosporidium. Contributions to Microbiology 6: 75–91.

    CAS  PubMed  Google Scholar 

  • Mead J.R., M.J. Arrowood, R.W. Sidwell, and M.C. Healey. 1991. Chronic Cryptosporidium parvum infections in congenitally immunodeficient SCID and nude mice. Journal of Infectious Diseases 163:1297–1304.

    CAS  PubMed  Google Scholar 

  • Mead, J.R., and X. You. 1998. susceptibility differences to Cryptosporidium parvum infection in two strains of gamma interferon knockout mice. Journal of Parasitology. 84:1045–1048.

    CAS  PubMed  Google Scholar 

  • Perryman L.A., P.H. Mason, and C.E. Chrisp. 1994. Effect of spleen cell populations in resolution of Cryptosporidium parvum infection in SCID mice. Infection and Immunity 62: 1474–1477.

    CAS  PubMed  Google Scholar 

  • Pollok R.C.G., M.J.G. Farthing, M. Bajaj-Elliott, I.R. Sanderson, and V. McDonald. 2001. Interferon gamma induces enterocyte resistance against infection by the intracellular pathogen Cryptosporidium parvum. Gastroenterology 120:99–107.

    Article  CAS  PubMed  Google Scholar 

  • Philpott D.J., S.E. Girardin, and P.J. Sansonetti. 2001. Innate immune responses of epithelial cells following infection with bacterial pathogens. Current Opinion in Immunology 13:410–416.

    CAS  PubMed  Google Scholar 

  • Roche J.K., C.A.P. Martins, R. Cosme, R. Fayer, and R.L. Guerrant. 2000. Transforming growth factor β1 ameliorates intestinal epithelial barrier disruption by Cryptosporidium parvum in vitro in the absence of mucosal T lymphocytes. Infection and Immunity 68:5635–5644.

    Article  CAS  PubMed  Google Scholar 

  • Robinson P., P.C. Okhuysen, C.L. Chappell, D.E. Lewis, I. Shahab, S. Lahoti, and A.C. White Jr. 2000. Transforming growth factor β1 is expressed in the jejunum after experimental Cryptosporidium parvum infection in humans. Infection and Immunity 68:5405–5407.

    Article  CAS  PubMed  Google Scholar 

  • Rohlman V., T. Kuhls, D. Mosier, D. Crawford, and R. Greenfield. 1993. Cryptosporidium parvum infection after abrogation of natural killer cell activity in normal and severe combined immunodeficiency mice. Journal of Parasitology 79: 295–297.

    CAS  PubMed  Google Scholar 

  • Sacco R.E, J.S. Haynes, J.A. Harp, W.R. Waters, and M.J. Wannemuehler. 1998. Cryptosporidium parvum initiates inflammatory bowel disease in germfree T cell receptor-α-deficient mice. American Journal of Pathology 153:1717–1722.

    CAS  PubMed  Google Scholar 

  • Smith, L.M., M.-T. Bonafonte, L.D. Campbell, and J.R. Mead. 2001. Exogenous interleukin-12 (IL-12) exacerbates Cryptosporidium parvum infection in gamma interferon knockout mice. Experimental parasitology. 98:123–133.

    Article  CAS  PubMed  Google Scholar 

  • Tarver AP, D.P. Clark, G. Diamond, J.P. Russell, H. Erdjument-Bromage, P. Tempst, K.S. Cohen, D.E. Jones, R.W. Sweeney, M. Wines, S. Hwang, and C.L. Bevins. 1998. Enteric β-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infection and Immunity 66: 1045–1056.

    CAS  PubMed  Google Scholar 

  • Theodos C.M. 1998. Innate and cell-mediated immune responses to Cryptosporidium parvum. Advances in Parasitology 40:87–119.

    CAS  PubMed  Google Scholar 

  • Tripp C.P., S.F. Wolf, and E.R. Unanue. 1993. Interleukin-12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin-10 is a physiologic antagonist. Proceedings of the National Academy of Sciences 90:3725–3729.

    CAS  Google Scholar 

  • Tzipori S. 1988. Cryptosporidiosis in perspective. Advances in Parasitology 27:63–129. Ungar B.L.P., J.A. Burris, C.A. Quinn, and F.D. Finkelman. 1990. New mouse models for chronic Cryptosporidium infection in immunodeficient hosts. Infection and Immunity 58: 961–969.

    CAS  PubMed  Google Scholar 

  • Ungar B.L.P., T.-C. Kao, J.A. Burris, and F.D. Finkelman. 1991 Cryptosporidium infection in an adult mouse model. Independent roles for IFN-g and CD4+ T lymphocytes in protective immunity. Journal of Immunology 147:1014–1022.

    CAS  Google Scholar 

  • Urban J.F. Jr., R. Fayer, S.-J. Chen, W.C. Gause, M.K. Gately, and F.D. Finkelman. 1996. IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. Journal of Immunology 156:263–268.

    CAS  Google Scholar 

  • Waters W.R., and J.A. Harp. 1996. Cryptosporidium parvum infection in T-cell receptor (TCR)-α and TCR-δ-deficient mice. Infection and Immunity 64:1854–1857.

    CAS  PubMed  Google Scholar 

  • White A.C., P. Robinson, P.C. Okhuysen, D.E. Lewis, I. Shahab, S. Lahoti, H.L. Dupont, and C.L. Chappell. 2000. Interferon-γ expression in jejunal biopsies in experimental human cryptosporidiosis correlates with prior sensitization and control of oocyst excretion. The Journal of Infectious Diseases 181:701–709.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, C.R. 2000. Cryptosporidium parvum and mucosal immunity in neonatal cattle. Animal Health Research Reviews. 1:25–34.

    CAS  PubMed  Google Scholar 

  • Wyatt, C.R., W.J. Barrett, E.J. Brackett, D.A. Schaefer, and M.W. Riggs. 2002. Association of IL-10 expression by mucosal lymphocytes with increased expression of Cryptosporidium parvum epitopes in infected epithelium. Journal of Parasitology. 88:281–286.

    CAS  PubMed  Google Scholar 

  • Wyatt, C.R., E.J. Brackett and W.J. Barrett. 1999. Accumulation of mucosal T lymphocytes around epithelial cells after in vitro infection with Cryptosporidium parvum. Journal of Parasitology. 85:765–768.

    CAS  PubMed  Google Scholar 

  • Wyatt, C.R., E.J. Brackett, P.H. Mason, J. Savidge, and L.E. Perryman. 2000. Excretion patterns of mucosally delivered antibodies to p23 in Cryptosporidium parvum infected calves. Veterinary Immunology and Immunopathology. 76:309–317.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, C.R., E.J. Brackett, L.E. Perryman, A. C. Rice-Ficht, W.C. Brown, and K.I. O’Rourke. 1997. Activation of intestinal intraepithelial T lymphocytes in calves infected with Cryptosporidium parvum. Infection and Immunity. 65:185–190.

    CAS  PubMed  Google Scholar 

  • Wyatt C.R., J. Bracket, and J. Savidge. 2001. Evidence for the emergence of a type-1-like immune response in intestinal mucosa of calves recovering from cryptosporidiosis. Journal of Parasitology 87:90–95.

    CAS  PubMed  Google Scholar 

  • Williams D.B., Vassilakos A., and W.K Suh. 1996. Peptide presentation by MHC class I molecules. Trends in Cellular Biology 6:267–273.

    CAS  Google Scholar 

  • Yin, Z., D.-H. Zhang, T. Welte, G. Bahtiyar, S. Jung, L. Liu, X.-Y. Fu, A. Ray, and J. Craft. 2000. Dominance of IL-12 over IL-4 in γδ cell differentiation leads to default production of IFN-γ failure to down-regulate IL-12 receptor αdeficient expression. Journal of Immunology. 164:3056–3064.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wyatt, C.R., McDonald, V. (2004). Innate and T Cell-Mediated Immune Responses in Cryptosporidiosis. In: Sterling, C.R., Adam, R.D. (eds) The Pathogenic Enteric Protozoa: Giardia, Entamoeba, Cryptosporidium and Cyclospora. World Class Parasites, vol 8. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7878-1_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7878-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7794-4

  • Online ISBN: 978-1-4020-7878-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics