Skip to main content

Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers

Applications to fracture mechanics of NC-Zirconia

  • Conference paper
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 28))

  • 1377 Accesses

Abstract

Scanning probe microscopy techniques enable one to investigate surface properties such as contact stiffness and friction between the probe tip and a sample with nm resolution. So far the bending and the torsional eigenmodes of an atomic force microscope cantilever have been used to image variations of elasticity and shear elasticity, respectively. Such images are near-field images with the resolution given by the contact radius typically between 10 nm and 50 nm. We show that the flexural modes of a cantilever oscillating in the width direction and parallel to the sample surface can also be used for imaging. Additional to the dominant in-plane component of the oscillation, the lateral modes exhibit a vertical component as well, provided there is an asymmetry in the cross-section of the cantilever or in its suspension. The out-of-plane deflection renders the lateral modes detectable by the optical position sensors used in atomic force microscopes. We studied cracks which were generated by Vickers indents, in submicro- and nanocrystalline ZrO2. Images of the lateral contact stiffness were obtained by vibrating the cantilever close to a contact-resonance frequency. A change in contact stiffness causes a shift of the resonant frequency and hence a change of the cantilever vibration amplitude. The lateral contact-stiffness images close to the crack faces display a contrast that we attribute to altered elastic properties indicating a process zone. This could be caused by a stress-induced phase transformation during crack propagation. Using the contact mode of an atomic force microscope, we measured the crack-opening displacement as a function of distance from the crack tip, and we determined the crack-tip toughness Ktip. Furthermore, K1c was inferred from the length of radial cracks of Vickers indents that were measured using classical scanning acoustic microscopy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C.F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett., 56, 930 (1986).

    Article  ADS  Google Scholar 

  2. V. Scherer, M. Reinstädtler, and W. Arnold, “Atomic Force Microscopy with Lateral Modulation” in Applied Scanning Probe Methods, Eds. H. Fuchs, B. Bhushan, and S. Hosaka (Springer, Berlin, 2003), pp. 76–115, and references therein.

    Google Scholar 

  3. B. Bhushan, in Handbook of Nanotechnology, edited by B. Bhushan (Springer, Berlin, 2004), pp. 497ff, and references therein.

    Google Scholar 

  4. C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chiang, “Atomic-scale friction of a tungsten tip on a graphite surface”, Phys. Rev. Lett., 59, 1942 (1987).

    Article  ADS  Google Scholar 

  5. T. Göddenhenrich, S. Müller, and C. Heiden, “A lateral technique for simultaneous friction and topography measurements with the atomic force microscope”, Rev. Sci. Instrum., 65, 2870 (1994).

    Article  ADS  Google Scholar 

  6. A. Caron, U. Rabe, M. Reinstädtler, J.A. Turner, and W. Arnold, “Imaging using lateral bending modes of atomic force microscope cantilevers”, Appl. Phys. Lett. 85, 6398 (2004).

    Article  ADS  Google Scholar 

  7. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, and W. Arnold, “Quantitative Determination of Contact Stiffness Using Atomic Force Acoustic Microscopy”, Ultrasonics, 38, 430 (2000), and reference contained therein.

    Article  Google Scholar 

  8. A.A. Griffiths, “The Phenomena of Rupture and Flaw in Solids”, Phil. Trans. R. Soc. London, A221, 163 (1920).

    ADS  Google Scholar 

  9. T.L. Anderson, Fracture Mechanics - Fundamentals and Applications, Chapter 6: Fracture Mechanics in Nonmetals, Boston: CRC Press (1991).

    Google Scholar 

  10. E. Babilon, G. Kleist, R.W. Steinbrech, and H. Nickel, “Untersuchung von Mikrorissfeldern in der Umgebung eines Makrorisses in Al2O3-Keramik mittels der Röntgenkleinwinkelstreuung”, Konferenzberichte des FZ Jülich, 7, Eds. H. Nickel and R.W. Steinbrech, 175 (1991).

    Google Scholar 

  11. W. Arnold, G. Weides, and S. Faßbender “Measurement of Elastic Properties Related to the R-Curve-Behavior of Ceramics”, Proc. Asian Pacific Conf. Fract. & Strength 2001 and Int. Conf. Adv. Technol. in Exp.. Mech., Jap. Soc. of Mech. Eng., Tokyo, 2001, 517.

    Google Scholar 

  12. F.F. Lange, “Transformation Toughening. Part 1: Size Effects Associated with the Thermodynamics of Constrained Transformations”, J. Mat. Sci.,17, 225 (1982).

    Article  ADS  Google Scholar 

  13. G.R. Irwin, “Fracture”, Handbuch der Physik, Springer Verlag, Berlin, 6, 551, (1958).

    Google Scholar 

  14. B.R. Lawn, “Fracture of Brittle Solids – Second Edition”, Sol. State Sci. Ser. Cambridge University Press, (1993).

    Google Scholar 

  15. J. Rödel, G. Kelly, and B.R. Lawn, “In-Situ Measurements of Bridged Cracked Interfaces in the SEM”, J. Am. Ceram. Soc.,73, 3313 (1990).

    Article  Google Scholar 

  16. D. Munz, and T. Fett, Mechanisches Verhalten keramischer Werkstoffe, in Werkstoffforschung und –Technik, B. Ilschner (Ed.), Springer, Heidelberg, 1989.

    Google Scholar 

  17. G.A.D. Briggs, “Scanning Acoustic Microscopy”, Oxford University Press, 1992.

    Google Scholar 

  18. AFM – Digital Instrument, www.veeco.com.

    Google Scholar 

  19. K. Yamanaka, H. Ogiso, and O. Kosolov, “Analysis of Subsurface Imaging Effect of Contact Elasticity in the Ultrasonic Force Microscopy”, Jpn. J. Appl. Phys., 33, 3197 (1994).

    Article  ADS  Google Scholar 

  20. M. Kopycinska-Müller, M. Reinstädtler, U. Rabe, A. Caron, S. Hirsekorn, and W. Arnold, “Ultrasonic modes in atomic force microscopy”, Proc. 27th Int. Symp. Acoustical Imaging, Kluwer Plenum Press, Eds. W. Arnold and S. Hirsekorn, 699–704 (2004).

    Google Scholar 

  21. M. Reinstädtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, and W. Arnold, “On the nanoscale measurement of friction using atomic force microscope cantilever torsional resonances”, Appl. Phys. Lett., 82, 2604 (2003).

    Article  ADS  Google Scholar 

  22. J. Eichler, “Mechanical Properties of Nanocrystalline Zirconia”, Ph.D. Thesis, Fachbereich Material- und Geowissenschaften, University of Technology, Darmstadt, Germany (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Caron, A., Rabe, U., Rödel, J., Arnold, W. (2007). Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers. In: André, M.P., et al. Acoustical Imaging. Acoustical Imaging, vol 28. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5721-0_4

Download citation

Publish with us

Policies and ethics