Skip to main content

Lymphocytes

  • Chapter

Abstract

Lymphocytes play a critical role in the defense against viral, bacterial and fungal infections. In the last few years our understanding of lymphocyte involvement in response to fungi has dramatically increased. Recent studies examining the immunopathogenesis of fungal infections have provided major insight into the crucial role of different T lymphocyte subsets in protection. The controlled activation of the Thl subset is the common denominator for ensuring protection against most fungal infections. However, nature of fungal organism (commensal opportunistic or frank pathogen), site of infection (local or systemic) and host susceptibility dictate kinetics, magnitude, and character of T lymphocyte responses in a highly complex, intricate regulatory pattern. This chapter describes progress in some of the major experimental models of lymphocyte-mediated immunity to fungal infections

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre, K., Crowe, J., Haas, A. and Smith, J. (2004) Resistance to Cryptococcus neoformans infection in the absence of CD4+ T cells. Med. Mycol. 42, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Aguirre, K.M. and Johnson, L.L. (1997) A role for B cells in resistance to Cryptococcus neoformans in mice. Infect. Immun. 65, 525–530.

    PubMed  CAS  Google Scholar 

  • Allen, H.L. and Deepe, G.S. (2005) Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum. J. Clin. Invest. 115, 2875–2885.

    Article  PubMed  CAS  Google Scholar 

  • Allendorfer, R., Brunner, G.D. and Deepe, G.S. Jr. (1999) Complex requirements for nascent and memory immunity in pulmonary histoplasmosis. J. Immunol. 162, 7389–7396.

    PubMed  CAS  Google Scholar 

  • Altamura, M., Casale, D., Pepe, M. and Tafaro, A. (2001) Immune responses to fungal infections and therapeutic implications. Curr Drug Targets Immune Endocr. Metabol. Disord. 1, 189–197.

    CAS  Google Scholar 

  • Banerjee, B., Greenberger, P.A., Fink, J.N. and Kurup, V.P. (99) formational and linear B-cell epitopes of Asp f 2, a major allergen of Aspergillus fumigatus, bind differently to immunoglobulin E antibody in the sera of allergic bronchopulmonary aspergillosis patients. Infect. Immun. 67, 2284–2291.

    PubMed  CAS  Google Scholar 

  • Baumgartner, R., Durant, P.J., van Gessel, Y., Chattopadhyay, S., Beswick, R.L., Tadaki, D.K., et al. (2002) Evidence for the requirement of T cell costimulation in the pathogenesis of natural Pneumocystis carinii pulmonary infection. Microb. Pathog. 33, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Beck, J.M. and Harmsen, A.G. (1998) Lymphocytes in host defense against Pneumocystis carinii. Semin. Respir. Infect. 13, 330–338.

    PubMed  CAS  Google Scholar 

  • Beck, J.M., Blackmon, M.B., Rose, C.M., Kimzey, S.L., Preston, A.M. and Green, J.M. (2003) T cell costimulatory molecule function determines susceptibility to infection with Pneumocystis carinii in mice. J. Immunol. 171, 1969–1977.

    PubMed  CAS  Google Scholar 

  • Belkaid, Y. and Rouse, B.T. (2005) Natural regulatory T cells in infectious disease. Nat. Immunol. 6, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio, S., Bozza, S., Montagnoli, C., Perruccio, K., Gaziano, R., Pitzurra, L. and Romani, L. (2005) Immunity to Aspergillus fumigatus: the basis for immunotherapy and vaccination. Med. Mycol. 43 (Suppl 1), S181–188.

    Article  PubMed  CAS  Google Scholar 

  • Bluestone, J.A. and Abbas, A.K. (2003) Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Bot, A., Smith, K.A. and von Herrath, M. (2004) Molecular and cellular control of T1/T2 immunity at the interface between antimicrobial defense and immune pathology. DNA Cell. Biol. 23, 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Bozza, S., Gaziano, R., Spreca, A., Bacci, A., Montagnoli, C., di Francesco, P. and Romani, L. (2002) Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J. Immunol. 168, 1362–1371.

    PubMed  CAS  Google Scholar 

  • Bozza, S., Perruccio, K., Montagnoli, C., Gaziano, R., Bellocchio, S., Burchielli, E., et al. (2003) A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood. 102, 3807–3814.

    Article  PubMed  CAS  Google Scholar 

  • Cenci, E., Mencacci, A., Del Sero, G., Bistoni, F. and Romani, L. (1997) Induction of protective Th1 responses to Candida albicans by antifungal therapy alone or in combination with an interleukin-4 antagonist. J. Infect. Dis. 176, 217–226.

    PubMed  CAS  Google Scholar 

  • Cenci, E., Mencacci, A., Fe d’Ostiani, C., Del Sero, G., Mosci, P., Montagnoli, C., et al. (1998) Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J. Infect. Dis. 178, 1750–1760.

    Article  PubMed  CAS  Google Scholar 

  • Cenci, E., Mencacci, A., Del Sero, G., Bacci, A., Montagnoli, C., d’Ostiani, C.F., et al. (1999) Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J. Infect. Dis. 180, 1957–1968.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, B., Hutcheson, P.S., Slavin, R.G. and Bellone, C.J. (2002) T-cell receptor bias in patients with allergic bronchopulmonary aspergillosis. Hum. Immunol. 63, 286–294.

    Article  PubMed  CAS  Google Scholar 

  • Clark, M.R., Massenburg, D., Siemasko, K., Hou, P. and Zhang, M. (2004) B-cell antigen receptor signaling requirements for targeting antigen to the MHC class II presentation pathway. Curr. Opin. Immunol. 16, 382–387.

    Article  PubMed  CAS  Google Scholar 

  • Claudia, M., Bacci, A., Silvia, B., Gaziano, R., Spreca, A. and Romani, L. (2002) The interaction of fungi with dendritic cells: implications for Th immunity and vaccination. Curr. Mol. Med. 2, 507–524.

    CAS  Google Scholar 

  • Clemons, K.V., Grunig, G., Sobel, R.A., Mirels, L.F., Rennick, D.M. and Stevens, D.A. (2000) Role of IL-10 in invasive aspergillosis: increased resistance of IL-10 gene knockout mice to lethal systemic aspergillosis. Clin. Exp. Immunol. 122, 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Collins, H.L. and Bancroft, G.J. (1991) Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect. Immun. 59, 3883–3888.

    PubMed  CAS  Google Scholar 

  • Coyle, A.J. and Gutierrez-Ramos, J.C. (2001) The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat. Immunol. 2, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Croft, M. (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620.

    Article  PubMed  CAS  Google Scholar 

  • d’Ostiani, C.F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., et al (2000) Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674.

    Article  PubMed  CAS  Google Scholar 

  • De Bernardis, F., Boccanera, M., Adriani, D., Girolamo, A. and Cassone, A. (2002) Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis. Infect. Immun. 70, 2725–2729.

    Article  PubMed  Google Scholar 

  • de Bernardis, F., Santoni, G., Boccanera, M., Spreghini, E., Adriani, D., Morelli, L. and Cassone, A. (2000) Local anticandidal immune responses in a rat model of vaginal infection by and protection against Candida albicans. Infect. Immun. 68, 3297–3304.

    Article  PubMed  Google Scholar 

  • de Repentigny, L., Lewandowski, D. and Jolicoeur, P. (2004) Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev. 17, 729–759, table of contents.

    Article  PubMed  CAS  Google Scholar 

  • Deepe, G.S. Jr. (1994) Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. J. Immunol. 152, 3491–3500.

    PubMed  Google Scholar 

  • Deepe, G.S. Jr. and Gibbons, R. (2001a) V beta 6+ T cells are obligatory for vaccine-induced immunity to Histoplasma capsulatum. J. Immunol. 167, 2219–2226.

    CAS  Google Scholar 

  • Deepe, G.S. Jr. and Gibbons, R. (2001b) Protective efficacy of H antigen from Histoplasma capsulatum in a murine model of pulmonary histoplasmosis. Infect. Immun. 69, 3128–3134.

    Article  CAS  Google Scholar 

  • Deepe, G.S. Jr. and Gibbons, R.S. (2002) Cellular and molecular regulation of vaccination with heat shock protein 60 from Histoplasma capsulatum. Infect. Immun. 70, 3759–3767.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, L., Williams, A.E., Krieg, A.M., Rae, A.J., Snelgrove, R.J. and Hussell, T. (2005) Stimulation via Toll-like receptor 9 reduces Cryptococcus neoformans-induced pulmonary inflammation in an IL-12-dependent manner. Eur. J. Immunol. 35, 273–281.

    Article  CAS  Google Scholar 

  • Farah, C.S., Elahi, S., Drysdale, K., Pang, G., Gotjamanos, T., Seymour, G.J., et al (2002) Primary role for CD4(+) T lymphocytes in recovery from oropharyngeal candidiasis. Infect. Immun. 70, 724–731.

    Article  PubMed  CAS  Google Scholar 

  • Farah, C.S., Hong, S., Wanasaengsakul, S., Elahi, S., Pang, G., Gotjamanos, T., et al (2001) Irradiation-induced oral candidiasis in an experimental murine model. Oral Microbiol. Immunol. 16, 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Fidel, P.L. Jr. (2002) Immunity to Candida. Oral Dis. 8 (Suppl 2), 69–75.

    Article  PubMed  Google Scholar 

  • Fidel, P.L. Jr. and Sobel, J.D. (1994) The role of cell-mediated immunity in candidiasis. Trends Microbiol. 2, 202–206.

    Article  PubMed  Google Scholar 

  • Fidel, P.L. Jr., Barousse, M., Lounev, V., Espinosa, T., Chesson, R.R. and Dunlap, K. (2003) Local immune responsiveness following intravaginal challenge with Candida antigen in adult women different stages of the menstrual cycle. Med. Mycol. 41, 97–109.

    PubMed  Google Scholar 

  • Gao, G.F., Tormo, J., Gerth, U.C., Wyer, J.R., McMichael, A.J., Stuart, D.I., et al (1997) Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature. 387, 630–634.

    Article  PubMed  CAS  Google Scholar 

  • Ghaleb, M., Hamad, M. and Abu-Elteen, K.H. (2003) Vaginal T lymphocyte population kinetics during experimental vaginal candidosis: evidence for a possible role of CD8+ T cells in protection against vaginal candidosis. Clin. Exp. Immunol. 131, 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Gigliotti, F., Garvy, B.A., Haidaris, C.G. and Harmsen, A.G. (1998) Recognition of Pneumocystis carinii antigens by local antibody-secreting cells following resolution of P. carinii pneumonia in mice. J. Infect. Dis. 178, 235–242.

    PubMed  CAS  Google Scholar 

  • Gluck, T., Geerdes-Fenge, H.F., Straub, R.H., Raffenberg, M., Lang, B., Lode, H. and Scholmerich, J. (2000) Pneumocystis carinii pneumonia as a complication of immunosuppressive therapy. Infection 28, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, A.M., Bullock, W.E., Taylor, C.L. and Deepe, G.S. Jr. (1988) Role of L3T4+ T cells in host defense against Histoplasma capsulatum. Infect. Immun. 56, 1685–1691.

    PubMed  CAS  Google Scholar 

  • Hanano, R. and Kaufmann, S.H. (1999) Pneumocystis carinii pneumonia in mutant mice deficient in both TCRalphabeta and TCRgammadelta cells: cytokine and antibody responses. J. Infect. Dis. 179, 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Harmsen, A.G. and Stankiewicz, M. (1991) T cells are not sufficient for resistance to Pneumocystis carinii pneumonia in mice. J. Protozool. 38, 44S–45S.

    PubMed  CAS  Google Scholar 

  • Hayday, A.C. (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026.

    Article  PubMed  CAS  Google Scholar 

  • Hebart, H., Bollinger, C., Fisch, P., Sarfati, J., Meisner, C., Baur, M., et al (2002) Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood. 100, 4521–4528.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, Y., Herring, A.C. and Huffnagle, G.B. (2004) Pulmonary defenses against fungi. Semin. Respir. Crit. Care Med. 25, 63–71.

    Article  PubMed  Google Scholar 

  • Hill, J.O. and Harmsen, A.G. (1991) Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J. Exp. Med. 173, 755–758.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J.O. and Aguirre, K.M. (1994) CD4+ T cell-dependent acquired state of immunity that protects the brain against Cryptococcus neoformans. J. Immunol. 152, 2344–2350.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B. (1996) Role of cytokines in T cell immunity to pulmonary Cryptococcus neoformans infection. l. Signals. it 5, 5–222.

    Google Scholar 

  • Huffnagle, G.B., Yates, J.L. and Lipscomb, M.F. (1991) Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J. Exp. Med. 173, 93–800.

    Article  Google Scholar 

  • Huffnagle, G.B., Lipscomb, M.F., Lovchik, J.A., Hoag, K.A. and Street, N.E. (1994) The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukoc. Biol. 55, 35–42.

    PubMed  CAS  Google Scholar 

  • Jones-Carson, J., Vazquez-Torres, A., van der Heyde, H.C., Warner, T., Wagner, R.D. and Balish, E. (1995) Gamma delta T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat. Med. 1, 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Kagi, M.K., Fierz, W., Grob, P.J. and Russi, E.W. (1993) High proportion of gamma-delta T cell receptor positive T cells in bronchoalveolar lavage and peripheral blood of HIV-infected patients with Pneumocystis carinii pneumonias. Respiration 60, 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, K. (2004) Regulation by innate immune T lymphocytes in the host defense against pulmonary infection with Cryptococcus neoformans. Jpn. J. Infect. Dis. 57, 137–145.

    CAS  Google Scholar 

  • Kawamura, M.S., Aiba, S. and Tagami, H. (1998) The importance of CD54 and CD86 costimulation in T cells stimulated with Candida albicans and Dermatophagoides farinae antigens in patients with atopic dermatitis. Arch. Dermatol. Res. 290, 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S., McClellan, J.S. and Knutsen, A.P. (2000) Increased sensitivity to IL-4 in patients with allergic bronchopulmonary aspergillosis. Int. Arch. Allergy Immunol. 123, 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Knutsen, A.P., Hutchinson, P.S., Albers, G.M., Consolino, J., Smick, J. and Kurup, V.P. (2004) Increased sensitivity to IL-4 in cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Allergy 59, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Kourilsky, P. and Claverie, J.M. (1989) MHC-antigen interaction: what does the T cell receptor see? Adv. Immunol. 45, 107–193.

    PubMed  CAS  Google Scholar 

  • Kroczek, R.A., Mages, H.W. and Hutloff, A. (2004) Emerging paradigms of T-cell co-stimulation. Curr. Opin. Immunol. 16, 321–327.

    Article  CAS  Google Scholar 

  • Kuruganti, U., Henderson, L.A., Garner, R.E., Asofsky, R., Baker, P.J. and Domer, J.E. (1988) Nonspecific and Candida-specific immune responses in mice suppressed by chronic administration of anti-mu. J. Leukoc. Biol. 44, 422–433.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M. and Dupont, M.P. (1993) Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J. Clin. Invest. 91, 1490–1498.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., North, E.A., Dupont, M.P. and Harrison, T.S. (1995) Mechanisms of inhibition of Cryptococcus neoformans by human lymphocytes. Infect. Immun. 63, 3550–3554.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., Nong, S., Mansour, M.K., Huang, C. and Specht, C.A. (2001) Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA. 98, 10422–10427.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Dial, S.M., Schmelz, M., Rennels, M.A. and Ampel, N.M. (2005) Cellular immune suppressor activity resides in lymphocyte cell clusters adjacent to granulomata in human coccidioidomycosis. Infect. Immun. 73, 3923–3928.

    Article  PubMed  CAS  Google Scholar 

  • Li Pira, G., Fenoglio, D., Bottone, L., Terranova, P., Pontali, E., Caroli, F., et al (2002) Preservation of clonal heterogeneity of the Pneumocystis carinii-specific CD4 T cell repertoire in HIV infected, asymptomatic individuals. Clin. Exp. Immunol. 128, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Lilly, E.A., Hart, D.J., Leigh, J.E., Hager, S., McNulty, K.M., Mercante, D.E. and Fidel, P.L. Jr. (2004) Tissue-associated cytokine expression in HIV-positive persons with oropharyngeal candidiasis. J. Infect. Dis. 190, 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Lim, T.S. and Murphy, J.W. (1980) Transfer of immunity to cryptococcosis by T-enriched splenic lymphocytes from Cryptococcus neoformans-sensitized mice. Infect. Immun. 30, 5–11.

    PubMed  CAS  Google Scholar 

  • Lin, J.S. and Wu-Hsieh, B.A. (2004) Functional T cells in primary immune response to histoplasmosis. Int. Immunol. 16, 1663–1673.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J.S., Yang, C.W., Wang, D.W. and Wu-Hsieh, B.A. (2005) Dendritic cells cross-present exogenous fungal antigens to stimulate a protective CD8 T cell response in infection by Histoplasma capsulatum. J. Immunol. 174, 6282–6291.

    PubMed  CAS  Google Scholar 

  • Lindell, D.M., Moore, T.A., McDonald, R.A., Toews, G.B. and Huffnagle, G.B. (2005) Generation of antifungal effector CD8+ T cells in the absence of CD4+ T cells during Cryptococcus neoformans infection. J. Immunol. 174, 7920–7928.

    PubMed  CAS  Google Scholar 

  • Lund, F.E., Garvy, B.A., Randall, T.D. and Harris, D.P. (2005) Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr. Dir. Autoimmun. 8, 25–54.

    PubMed  CAS  Google Scholar 

  • Lund, F.E., Schuer, K., Hollifield, M., Randall, T.D. and Garvy, B.A. (2003) Clearance of Pneumocystis carinii in mice is dependent on B cells but not on P carinii-specific antibody. J. Immunol. 171, 1423–1430.

    PubMed  CAS  Google Scholar 

  • Mansour, M.K., Schlesinger, L.S. and Levitz, S.M. (2002) Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 168, 2872–2879.

    PubMed  CAS  Google Scholar 

  • Mansour, M.K., Yauch, L.E., Rottman, J.B. and Levitz, S.M. (2004) Protective efficacy of antigenic fractions in mouse models of cryptococcosis. Infect Immun. 72, 1746–1754.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, F., Steele, C., Zheng, M., Young, E., Shellito, J.E., Marrero, L. and Kolls, J.K. (2004) T cytotoxic-1 CD8+ T cells are effector cells against pneumocystis in mice. J. Immunol. 172, 1132–1138.

    PubMed  CAS  Google Scholar 

  • McNulty, K.M., Plianrungsi, J., Leigh, J.E., Mercante, D. and Fidel, P.L. Jr. (2005) Characterization of CD8+ T cells and microenvironment in oral lesions of human immunodeficiency virus-infected persons with oropharyngeal candidiasis. Infect. Immun. 73, 3659–3667.

    Article  PubMed  CAS  Google Scholar 

  • Mehrad, B., Strieter, R.M. and Standiford, T.J. (1999) Role of TNF-alpha in pulmonary host defense in murine invasive aspergillosis. J. Immunol. 162, 1633–1640.

    PubMed  CAS  Google Scholar 

  • Meissner, N.N., Swain, S., Tighe, M. and Harmsen, A. (2005) Role of type I IFNs in pulmonary complications of Pneumocystis murina infection. J. Immunol. 174, 5462–5471.

    PubMed  CAS  Google Scholar 

  • Mencacci, A., Cenci, E., Bacci, A., Montagnoli, C., Bistoni, F. and Romani, L. (2000) Cytokines in candidiasis and aspergillosis. Curr. Pharm. Biotechnol. 1, 235–251.

    Article  PubMed  CAS  Google Scholar 

  • Mencacci, A., Del Sero, G., Cenci, E., d’Ostiani, C.F., Bacci, A., Montagnoli, C., et al (1998a) Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. 187, 307–317.

    Article  CAS  Google Scholar 

  • Mencacci, A., Cenci, E., Del Sero, G., Fe d’Ostiani, C., Mosci, P., Trinchieri, G., et al (1998b) IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J. Immunol. 161, 6228–6237.

    CAS  Google Scholar 

  • Mencacci, A., Montagnoli, C., Bacci, A., Cenci, E., Pitzurra, L., Spreca, A., et al (2002) CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J. Immunol. 169, 3180–3190.

    PubMed  CAS  Google Scholar 

  • Mills, K.H. and McGuirk, P. (2004) Antigen-specific regulatory T cells–their induction and role in infection. Semin. Immunol. 16, 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Mittrucker, H.W. and Kaufmann, S.H. (2004) Mini-review: regulatory T cells and infection: suppression revisited. Eur. J. Immunol. 34, 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Miyagi, K., Kawakami, K., Kinjo, Y., Uezu, K., Kinjo, T., Nakamura, K. and Saito, A. (2005) CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-gamma production by CD4+ T cells. Clin. Exp. Immunol. 140, 220–229.

    Article  PubMed  CAS  Google Scholar 

  • Mody, C.H., Chen, G.H., Jackson, C., Curtis, J.L. and Toews, G.B. (1993) Depletion of murine CD8+ T cells in vivo decreases pulmonary clearance of a moderately virulent strain of Cryptococcus neoformans. J. Lab. Clin. Med. 121, 765–773.

    PubMed  CAS  Google Scholar 

  • Monga, D.P., Kumar, R., Mohapatra, L.N. and Malaviya, A.N. (1979) Experimental cryptococcosis in normal and B-cell-deficient mice. Infect. Immun. 26, 1–3.

    PubMed  CAS  Google Scholar 

  • Montagnoli, C., Bacci, A., Bozza, S., Gaziano, R., Mosci, P., Sharpe, A.H. and Romani, L. (2002) B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J. Immunol. 169, 6298–6308.

    PubMed  CAS  Google Scholar 

  • Montagnoli, C., Bozza, S., Bacci, A., Gaziano, R., Mosci, P., Morschhauser, J., et al (2003) A role for antibodies in the generation of memory antifungal immunity. Eur. J. Immunol. 33, 1193–1204.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann, T.R. and Coffman, R.L. (1989) Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 46, 111–147.

    PubMed  CAS  Google Scholar 

  • Mosmann, T.R. and Sad, S. (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today. 17, 138–146.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J.W., Hidore, M.R. and Wong, S.C. (1993) Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J. Clin. Invest. 91, 1553–1566.

    Article  PubMed  CAS  Google Scholar 

  • Muth, S.M. and Murphy, J.W. (1995a) Effects of immunization with Cryptococcus neoformans cells or cryptococcal culture filtrate antigen on direct anticryptococcal activities of murine T lymphocytes. Infect. Immun. 63, 1645–1651.

    CAS  Google Scholar 

  • Muth, S.M. and Murphy, J.W. (1995b) Direct anticryptococcal activity of lymphocytes from Cryptococcus neoformans-immunized mice. Infect. Immun. 63, 1637–1644.

    CAS  Google Scholar 

  • Myers, T.A., Leigh, J.E., Arribas, A.R., Hager, S., Clark, R., Lilly, E. and Fidel, P.L. Jr. (2003) Immunohistochemical evaluation of T cells in oral lesions from human immunodeficiency virus-positive persons with oropharyngeal candidiasis. Infect. Immun. 71, 956–963.

    Article  PubMed  CAS  Google Scholar 

  • Netea, M.G., Sutmuller, R., Hermann, C., Van der Graaf, C.A., Van der Meer, J.W., van Krieken, J.H., et al (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712–3718.

    PubMed  CAS  Google Scholar 

  • Nomanbhoy, F., Steele, C., Yano, J. and Fidel, P.L. Jr. (2002) Vaginal and oral epithelial cell anti-Candida activity. Infect. Immun. 70, 7081–7088.

    Article  PubMed  CAS  Google Scholar 

  • O’Garra, A., Vieira, P.L., Vieira, P. and Goldfeld, A.E. (2004) IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J. Clin. Invest. 114, 1372–1378.

    Article  PubMed  CAS  Google Scholar 

  • Ogata, H., Su, I., Miyake, K., Nagai, Y., Akashi, S., Mecklenbrauker, I., et al (2000) The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med. 192, 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Peeters, D., Day, M.J. and Clercx, C. (2005) An immunohistochemical study of canine nasal aspergillosis. J. Comp. Pathol. 132, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Pericolini, E., Cenci E., Monari C., De Jesus M., Bistoni F., Casadevall A., et al. (2005) Cryptococcus neoformans capsular polysaccharide component Galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8. Cell. Microbiol. 8, 267–275.

    Article  CAS  Google Scholar 

  • Piccinni, M.P., Vultaggio, A., Scaletti, C., Livi, C., Gomez, M.J., Giudizi, M.G., et al (2002) Type 1 T helper cells specific for Candida albicans antigens in peripheral blood and vaginal mucosa of women with recurrent vaginal candidiasis. J. Infect. Dis. 186, 87–93.

    Article  PubMed  Google Scholar 

  • Pietrella, D., Perito, S., Bistoni, F. and Vecchiarelli, A. (2001a) Cytotoxic T lymphocyte antigen costimulation influences T-cell activation in response to Cryptococcus neoformans. Infect. Immun. 69, 1508–1514.

    Article  CAS  Google Scholar 

  • Pietrella, D., Corbucci, C., Perito, S., Bistoni, G. and Vecchiarelli, A. (2005) Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73, 820–827.

    Article  PubMed  CAS  Google Scholar 

  • Pietrella, D., Lupo, P., Perito, S., Mosci, P., Bistoni, F. and Vecchiarelli, A. (2004) Disruption of CD40/CD40L interaction influences the course of Cryptococcus neoformans infection. FEMS Immunol. Med. Microbiol. 40, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Pietrella, D., Cherniak, R., Strappini, C., Perito, S., Mosci, P., Bistoni, F. and Vecchiarelli, A. (2001b) Role of mannoprotein in induction and regulation of immunity to Cryptococcus neoformans. Infect. Immun. 69, 2808–2814.

    Article  CAS  Google Scholar 

  • Pitzurra, L., Cherniak, R., Giammarioli, M., Perito, S., Bistoni, F. and Vecchiarelli, A. (2000) Early induction of interleukin-12 by human monocytes exposed to Cryptococcus neoformans mannoproteins. Infect. Immun. 68, 558–563.

    Article  PubMed  CAS  Google Scholar 

  • Powrie, F. and Coffman, R.L. (1993) Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol. Today. 14, 270–274.

    Article  PubMed  CAS  Google Scholar 

  • Puccetti, P., Romani, L. and Bistoni, F. (1995) A TH1-TH2-like switch in candidiasis: new perspectives for therapy. Trends Microbiol. 3, 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Ramadan, G., Davies, B., Kurup, V.P. and Keever-Taylor, C.A. (2005) Generation of cytotoxic T cell responses directed to human leucocyte antigen Class I restricted epitopes from the Aspergillus f16 allergen. Clin. Exp. Immunol. 140, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Retini, C., Vecchiarelli, A., Monari, C., Bistoni, F. and Kozel, T.R. (1998) Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect. Immun. 66, 664–669.

    PubMed  CAS  Google Scholar 

  • Retini, C., Casadevall, A., Pietrella, D., Monari, C., Palazzetti, B. and Vecchiarelli, A. (1999) Specific activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans. J. Immunol. 162, 1618–1623.

    PubMed  CAS  Google Scholar 

  • Retini, C., Kozel, T.R., Pietrella, D., Monari, C., Bistoni, F. and Vecchiarelli, A. (2001) Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect. Immun. 69, 6064–6073.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, J., Zaragoza, O. and Casadevall, A. (2005) Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infect. Immun. 73, 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli, G., Nisini, R., Chiani, P., Mariotti, S., Teloni, R., Cassone, A. and Torosantucci, A. (2004) The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J. Leukoc. Biol. 75, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Romani, L. (1999) Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr. Opin. Microbiol. 2, 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Romani, L., Mencacci, A., Grohmann, U., Mocci, S., Mosci, P., Puccetti, P. and Bistoni, F. (1992) Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J. Exp. Med. 176, 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Santoni, G., Boccanera, M., Adriani, D., Lucciarini, R., Amantini, C., Morrone, S., et al (2002) Immune cell-mediated protection against vaginal candidiasis: evidence for a major role of vaginal CD4(+)T cells and possible participation of other local lymphocyte effectors. Infect. Immun. 70, 4791–4797.

    Article  PubMed  CAS  Google Scholar 

  • Scanlon, S.T., Milovanova, T., Kierstein, S., Cao, Y., Atochina, E.N., Tomer, Y., et al (2005) Surfactant protein-A inhibits Aspergillus fumigatus-induced allergic T-cell responses. Respir. Res. 6, 97.

    Article  PubMed  CAS  Google Scholar 

  • Scheckelhoff, M. and Deepe, G.S. Jr. (2002) The protective immune response to heat shock protein 60 of Histoplasma capsulatum is mediated by a subset of V beta 8.1/8.2+ T cells. J. Immunol. 169, 5818–5826.

    PubMed  CAS  Google Scholar 

  • Shellito, J.E., Tate, C., Ruan, S. and Kolls, J. (2000) Murine CD4+ T lymphocyte subsets and host defense against Pneumocystis carinii. J. Infect. Dis. 181, 2011–2017.

    Article  PubMed  CAS  Google Scholar 

  • Spaccapelo, R., Del Sero, G., Mosci, P., Bistoni, F. and Romani, L. (1997) Early T cell unresponsiveness in mice with candidiasis and reversal by IL-2: effect on T helper cell development. J. Immunol. 158, 2294–2302.

    PubMed  CAS  Google Scholar 

  • Spanopoulou, E., Roman, C.A., Corcoran, L.M., Schlissel, M.S., Silver, D.P., Nemazee, D., et al (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes. Dev. 8, 1030–1042.

    PubMed  CAS  Google Scholar 

  • Spellberg, B. and Edwards, J.E. Jr. (2001) Type 1/Type 2 immunity in infectious diseases. Clin. Infect. Dis. 32, 76–102.

    Article  PubMed  CAS  Google Scholar 

  • Spellberg, B., Johnston, D., Phan, Q.T., Edwards, J.E. Jr., French, S.W., Ibrahim, A.S. and Filler, S.G. (2003) Parenchymal organ, and not splenic, immunity correlates with host survival during disseminated candidiasis. Infect. Immun. 71, 5756–5764.

    Article  PubMed  CAS  Google Scholar 

  • Stanzani, M., Orciuolo, E., Lewis, R., Kontoyiannis, D.P., Martins, S.L., St John, L.S. and Komanduri, K.V. (2005) Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood. 105, 2258–2265.

    Article  PubMed  CAS  Google Scholar 

  • Steele, C., Shellito, J.E. and Kolls, J.K. (2005) Immunity against the opportunistic fungal pathogen Pneumocystis. Med. Mycol. 43, 1–19.

    Article  PubMed  Google Scholar 

  • Steele, C., Zheng, M., Young, E., Marrero, L., Shellito, J.E. and Kolls, J.K. (2002) Increased host resistance against Pneumocystis carinii pneumonia in gammadelta T-cell-deficient mice: protective role of gamma interferon and CD8(+) T cells. Infect. Immun. 70, 5208–5215.

    Article  PubMed  CAS  Google Scholar 

  • Stringer, J.R., Beard, C.B., Miller, R.F. and Wakefield, A.E. (2002) A new name (Pneumocystis jiroveci) for Pneumocystis from humans. Emerg. Infect. Dis. 8, 891–896.

    PubMed  Google Scholar 

  • Torosantucci, A., Bromuro, C., Chiani, P., De Bernardis, F., Berti, F., Galli, C., et al (2005) A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Triebel, F. and Hercend, T. (1989) Subpopulations of human peripheral T gamma delta lymphocytes. Immunol. Today 10, 186–188.

    Article  PubMed  CAS  Google Scholar 

  • Uezu, K., Kawakami, K., Miyagi, K., Kinjo, Y., Kinjo, T., Ishikawa, H. and Saito, A. (2004) Accumulation of gammadelta T cells in the lungs and their regulatory roles in Th1 response and host defense against pulmonary infection with Cryptococcus neoformans. J. Immunol. 172, 7629–7634.

    PubMed  CAS  Google Scholar 

  • Vecchiarelli, A. (2000a) Cytokines and costimulatory molecules: positive and negative regulation of the immune response to Cryptococcus neoformans. Arch Immunol. Ther. Exp (Warsz). 48, 465–472.

    CAS  Google Scholar 

  • Vecchiarelli, A. (2000b) Immunoregulation by capsular components of Cryptococcus neoformans. Med. Mycol. 38, 407–417.

    CAS  Google Scholar 

  • Vecchiarelli, A., Retini, C., Monari, C., Tascini, C., Bistoni, F. and Kozel, T.R. (1996) Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect. Immun. 64, 2846–2849.

    PubMed  CAS  Google Scholar 

  • Vecchiarelli, A., Pietrella, D., Lupo, P., Bistoni, F., McFadden, D.C. and Casadevall, A. (2003) The polysaccharide capsule of Cryptococcus neoformans interferes with human dendritic cell maturation and activation. J. Leukoc. Biol. 74, 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Vecchiarelli, A., Pietrella, D., Dottorini, M., Monari, C., Retini, C., Todisco, T. and Bistoni, F. (1994) Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin. Exp. Immunol. 98, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • von Bernuth, H., Knochel, B., Winkler, U., Roesler, J., Schlesier, M. and Gahr, M. (2002) Immunodeficiency with recurrent panlymphocytopenia, impaired maturation of B lymphocytes, impaired interaction of T and B lymphocytes, and impaired integrity of epithelial tissue: a variant of idiopathic CD4+ T lymphocytopenia? Pediatr. Allergy Immunol. 13, 381–384.

    Article  Google Scholar 

  • Wagner, R.D., Vazquez-Torres, A., Jones-Carson, J., Warner, T. and Balish, E. (1996) B cell knockout mice are resistant to mucosal and systemic candidiasis of endogenous origin but susceptible to experimental systemic candidiasis. J. Infect. Dis. 174, 589–597.

    PubMed  CAS  Google Scholar 

  • Wang, J.E., Warris, A., Ellingsen, E.A., Jorgensen, P.F., Flo, T.H., Espevik, T., et al (2001a) Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect. Immun. 69, 2402–2406.

    Article  CAS  Google Scholar 

  • Wang, J.H., Meijers, R., Xiong, Y., Liu, J.H., Sakihama, T., Zhang, R., et al. (2001b) Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc. Natl. Acad. Sci. USA. 98, 10799–10804.

    Article  CAS  Google Scholar 

  • White, D.J., Stevenson, M., Shahmanesh, M. and Gentle, T. (1997) Women with recurrent vaginal candidosis have normal peripheral blood B and T lymphocyte subset levels. Genitourin. Med. 73, 475–476.

    PubMed  CAS  Google Scholar 

  • Wormley, F.L. Jr., Cutright, J. and Fidel, P.L. Jr. (2003) Multiple experimental designs to evaluate the role of T-cell-mediated immunity against experimental vaginal Candida albicans infection. Med. Mycol. 41, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Wormley, F.L. Jr., Steele, C., Wozniak, K., Fujihashi, K., McGhee, J.R. and Fidel, P.L. Jr. (2001) Resistance of T-cell receptor delta-chain-deficient mice to experimental Candida albicans vaginitis. Infect. Immun. 69, 7162–7164.

    Article  PubMed  CAS  Google Scholar 

  • Wuthrich, M., Filutowicz, H.I., Warner, T., Deepe, G.S. Jr. and Klein, B.S. (2003) Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J. Exp. Med. 197, 1405–1416.

    Article  PubMed  CAS  Google Scholar 

  • Yano, J., Lilly, E.A., Steele, C., Fortenberry, D. and Fidel, P.L. Jr. (2005) Oral and vaginal epithelial cell anti-Candida activity is acid labile and does not require live epithelial cells. Oral Microbiol. Immunol. 20, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Young, F., Ardman, B., Shinkai, Y., Lansford, R., Blackwell, T.K., Mendelsohn, M., et al. (1994) Influence of immunoglobulin heavy- and light-chain expression on B-cell differentiation. Genes. Dev. 8, 1043–1057.

    PubMed  CAS  Google Scholar 

  • Zhou, P. and Seder, R.A. (1998) CD40 ligand is not essential for induction of type 1 cytokine responses or protective immunity after primary or secondary infection with histoplasma capsulatum. J. Exp. Med. 187, 1315–1324.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, P., Sieve, M.C., Bennett, J., Kwon-Chung, K.J., Tewari, R.P., Gazzinelli, R.T., et al. (1995) IL-12 prevents mortality in mice infected with Histoplasma capsulatum through induction of IFN-gamma. J. Immunol. 155, 785–795.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vecchiarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vecchiarelli, A., Mencacci, A., Bistoni, F. (2007). Lymphocytes. In: Brown, G.D., Netea, M.G. (eds) Immunology of Fungal Infections. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5492-0_4

Download citation

Publish with us

Policies and ethics