Skip to main content

Histone Variants and Complexes Involved in Their Exchange

  • Chapter
Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

In contrast to canonical histones, which are assembled into nucleosomes during DNA replication, histone variants can be incorporated into specific regions of the genome throughout the cell cycle. Recent findings suggest that histone variants associate with factors mediating their deposition into specialized chromatin domains. The mechanisms of their targeted deposition, their turnover, and their posttranslational modification are not yet fully understood. Emerging evidence indicates that histone variants and associated factors are essential for the epigenetic control of gene expression and other cellular responses. Thus, histone variants and complexes involved in their exchange are likely to play major roles in controlling chromosomal architecture, and their deregulation is expected to be linked to cancers, infertility, mental disorders, ageing, and degenerative diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausio J (2001) Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 276: 41945–41949

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Allard S, Masson JY, Cote J (2004) Chromatin remodeling and the maintenance of genome integrity. Biochim Biophys Acta 1677: 158–64

    PubMed  CAS  Google Scholar 

  • Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S (2003) The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11: 1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Konesky K, Park YJ, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. Embo J 23: 3314–3324

    Article  PubMed  CAS  Google Scholar 

  • Bates DL, Thomas JO (1981) Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res 9: 5883–5894

    Article  PubMed  CAS  Google Scholar 

  • Becker M, Becker A, Miyara F, Han Z, Kihara M, Brown DT, Hager GL, Latham K, Adashi EY, Misteli T (2005) Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol Biol Cell 16: 3887–3895

    Article  PubMed  CAS  Google Scholar 

  • Bruce K, Myers FA, Mantouvalou E, Lefevre P, Greaves I, Bonifer C, Tremethick DJ, Thorne AW, Crane C-Robinson (2005) The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res 33: 5633–5639

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Jin J, Florens L, Swanson SK, Kusch T, Li B, Workman JL, Washburn MP, Conaway RC, Conaway JW (2005) The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem 280:13665–13670

    Article  PubMed  CAS  Google Scholar 

  • Catez F, Ueda T, Bustin M (2006) Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296: 922–927

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K (2005) Structural characterization of the histone variant macroH2A. Mol Cell Biol 25: 7616–7624

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Brown CJ (2003) Forming facultative heterochromatin: silencing of an X chromosome in mammalian females. Cell Mol Life Sci 60: 2586–2603

    Article  PubMed  CAS  Google Scholar 

  • Cole KD, Kandala JC, Kistler WS (1986) Isolation of the gene for the testis-specific H1 histone variant H1t. J Biol Chem 261: 7178–7183

    PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599–601

    Article  PubMed  CAS  Google Scholar 

  • Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408: 1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979–990

    Article  PubMed  CAS  Google Scholar 

  • Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S (2006) Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 26: 1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Drabent B, Saftig P, Bode C, Doenecke D (2000) Spermatogenesis proceeds normally in mice without linker histone H1t. Histochem Cell Biol 113: 433–442

    PubMed  CAS  Google Scholar 

  • Drabent B, Benavente R, Hoyer-Fender S (2003) Histone H1t is not replaced by H1.1 or H1.2 in pachytene spermatocytes or spermatids of H1t-deficient mice. Cytogenet Genome Res 103: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Ehrenhofer-Murray AE (2004) Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem 271: 2335–2349

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2002) Dosage compensation: do birds do it as well? Trends Genet 18: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Farris SD, Rubio ED, Moon JJ, Gombert WM, Nelson BH, Krumm A (2005) Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem 280: 25298–25303

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Celeste A, Nussenzweig A (2003a) Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2: 426–427

    CAS  Google Scholar 

  • Fernandez-Capetillo O, Liebe B, Scherthan H, Nussenzweig A (2003b) H2AX regulates meiotic telomere clustering. J Cell Biol 163: 15–20

    Article  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003c) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4: 497–508

    Article  CAS  Google Scholar 

  • Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T (2004) Sin mutations alter inherent nucleosome mobility. Embo J 23: 343–353

    Article  PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8: 458–469

    Article  PubMed  CAS  Google Scholar 

  • Gautier T, Abbott DW, Molla A, Verdel A, Ausio J, Dimitrov S (2004) Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep 5: 715–720

    Article  PubMed  CAS  Google Scholar 

  • Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384.

    Article  PubMed  Google Scholar 

  • Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281: 559–568

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Fender S, Costanzi C, Pehrson JR (2000) Histone macroH2A1.2 is concentrated in the XY-body by the early pachytene stage of spermatogenesis. Exp Cell Res 258: 254–260

    Article  PubMed  CAS  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463–473

    Article  PubMed  CAS  Google Scholar 

  • Isenberg I (1979) Histones. Annu Rev Biochem 48: 159–191

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Cai Y, Li B, Conaway RC, Workman JL, Conaway JW, Kusch T (2005) In and out: histone variant exchange in chromatin. Trends Biochem Sci 30: 680–687

    PubMed  CAS  Google Scholar 

  • Khochbin S (2001) Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 271: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Klymenko T, Papp B, Fischle W, Kocher T, Schelder M, Fritsch C, Wild B, Wilm M, Muller J (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20: 1110–1122

    Article  PubMed  CAS  Google Scholar 

  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, Madhani HD, Rine J (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:E131.

    Article  PubMed  Google Scholar 

  • Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12: 1565–1576

    Article  PubMed  CAS  Google Scholar 

  • Krogan NJ, Baetz K, Keogh MC, Datta N, Sawa C, Kwok TC, Thompson NJ, Davey MG, Pootoolal J, Hughes TR, Emili A, Buratowski S, Hieter P, Greenblatt JF (2004) Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci U S A 101: 13513–13518

    Article  PubMed  CAS  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR, 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306: 2084–2087

    Article  PubMed  CAS  Google Scholar 

  • Kusch T, Guelman S, Abmayr SM, Workman JL (2003) Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol Cell Biol 23: 3305–3319

    Article  PubMed  CAS  Google Scholar 

  • Leach TJ, Mazzeo M, Chotkowski HL, Madigan JP, Wotring MG, Glaser RL (2000) Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem 275: 23267–23272

    Article  PubMed  CAS  Google Scholar 

  • Li A, Eirin-Lopez JM, Ausio J (2005a) H2AX: tailoring histone H2A for chromatin-dependent genomic integrity. Biochem Cell Biol 83: 505–515

    Article  CAS  Google Scholar 

  • Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, Seidel C, Gerton J, Workman JL (2005b) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 102: 18385–18390

    Article  CAS  Google Scholar 

  • Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437: 1386–1390

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Richmond TJ (1998) DNA binding within the nucleosome core. Curr Opin Struct Biol 8: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891

    Article  PubMed  CAS  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A 101: 1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112: 725–736

    Article  PubMed  CAS  Google Scholar 

  • Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20: 711–722

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303: 343–348

    Article  PubMed  CAS  Google Scholar 

  • Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119: 767–775

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K, Drabent B, Meinhardt A, Adham IM, Schwandt I, Muller C, Sancken U, Kleene KC, Engel W (2005) Triple knockouts reveal gene interactions affecting fertility of male mice. Mol Reprod Dev 70: 406–416

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR, 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8: 446–457

    Article  PubMed  CAS  Google Scholar 

  • Park YJ, Dyer PN, Tremethick DJ, Luger K (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279: 24274–24282

    Article  PubMed  CAS  Google Scholar 

  • Parseghian MH, Hamkalo BA (2001) A compendium of the histone H1 family of somatic subtypes: an elusive cast of characters and their characteristics. Biochem Cell Biol 79: 289–304

    Article  PubMed  CAS  Google Scholar 

  • Pehrson JR, Fuji RN (1998) Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res 26: 2837–2842

    Article  PubMed  CAS  Google Scholar 

  • Petersen S, Casellas R, Reina-San-Martin B, Chen HT, Difilippantonio MJ, Wilson PC, Hanitsch L, Celeste A, Muramatsu M, Pilch DR, Redon C, Ried T, Bonner WM, Honjo T, Nussenzweig MC, Nussenzweig A (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414: 660–665

    Article  PubMed  CAS  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5’ ends of both active and inactive genes in euchromatin. Cell 123: 233–248

    Article  PubMed  CAS  Google Scholar 

  • Rangasamy D, Berven L, Ridgway P, Tremethick DJ (2003) Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. Embo J 22: 1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Rangasamy D, Greaves I, Tremethick DJ (2004) RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol 11: 650–655

    Article  PubMed  CAS  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12: 162–169

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Gorovsky MA (2001) Histone H2A.Z acetylation modulates an essential charge patch. Mol Cell 7: 1329–1335

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19: 804–814

    Article  PubMed  CAS  Google Scholar 

  • Sedelnikova OA, Pilch DR, Redon C, Bonner WM (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2: 233–235

    PubMed  CAS  Google Scholar 

  • Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Smith MM (2002) Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol 14: 279–285

    Article  PubMed  CAS  Google Scholar 

  • Stargell LA, Bowen J, Dadd CA, Dedon PC, Davis M, Cook RG, Allis CD, Gorovsky MA (1993) Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Genes Dev 7: 2641–2651

    Article  PubMed  CAS  Google Scholar 

  • Steinbach OC, Wolffe AP, Rupp RA (1997) Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389: 395–399

    Article  PubMed  CAS  Google Scholar 

  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7: 1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan J, Baxter EM, Corces VG (2005) The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19: 65–76

    Article  PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Hennebold JD, Macfarlane J, Adashi EY (2001) A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128: 655–664

    PubMed  CAS  Google Scholar 

  • Tanaka M, Kihara M, Hennebold JD, Eppig JJ, Viveiros MM, Emery BR, Carrell DT, Kirkman NJ, Meczekalski B, Zhou J, Bondy CA, Becker M, Schultz RM, Misteli T, De La Fuente R, King GJ, Adashi EY (2005) H1FOO is coupled to the initiation of oocytic growth. Biol Reprod 72: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Thatcher TH, Gorovsky MA (1994) Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res 22: 174–179

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Kinoshita Y, Xu ZJ, Ide N, Ono M, Akahori Y, Tanaka I, Inoue M (2000) Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108: 491–500

    Article  PubMed  CAS  Google Scholar 

  • Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16: 991–1002

    Article  PubMed  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119: 777–788

    Article  PubMed  Google Scholar 

  • Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Wu WH, Alami S, Luk E, Wu CH, Sen S, Mizuguchi G, Wei D, Wu C (2005) Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol 12: 1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123: 219–231

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kusch, T., Workman, J.L. (2007). Histone Variants and Complexes Involved in Their Exchange. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_5

Download citation

Publish with us

Policies and ethics