Skip to main content

Regulation of Chromatin Structure and Chromatin-Dependent Transcription by Poly(Adp-Ribose) Polymerase-1

Possible targets for drug-based therapies

  • Chapter
Book cover Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

Poly(ADP-Ribose) Polymerase-1 (PARP-1) is the prototypical and most abundantly expressed member of a family of PARPs that catalyze the polymerization of ADP-ribose (ADPR) units from donor NAD+ molecules on target proteins. PARP-1 plays roles in a variety of genomic processes, including the regulation of chromatin structure and transcription in response to specific cellular signals. PARP-1 also plays important roles in many stress-induced disease states. In this chapter, we review the molecular and cellular aspects of PARP-1’s chromatin-modulating activities, as well as the impact that these chromatin-modulating activities have on the regulation of gene expression. In addition, we highlight the potential therapeutic use of drugs that target PARP-1’s enzymatic activity for the treatment of human diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamietz P, Rudolph A (1984) ADP-ribosylation of nuclear proteins in vivo. Identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH 7974 cells. J Biol Chem 259: 6841–6846

    PubMed  CAS  Google Scholar 

  • Amé J-C, Jacobson EL, Jacobson MK (2000) ADP-ribose polymer metabolism. In: de Murcia G, Shall S (eds) From DNA damage and stress signalling to cell death: poly ADP-ribosylation reactions. Oxford University Press, New York, pp 1–34

    Google Scholar 

  • Amé JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274: 17860–17868

    PubMed  Google Scholar 

  • Amé, JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26: 882–893

    PubMed  Google Scholar 

  • Andreone TL, O’Connor, M, Denenberg A, Hake PW, Zingarelli B (2003) Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol 170: 2113–2120

    PubMed  CAS  Google Scholar 

  • Arundel-Suto CM, Scavone SV, Turner WR, Suto MJ, Sebolt-Leopold JS (1991) Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray-induced cellular recovery processes in Chinese hamster V79 cells. Radiat Res 126: 367–371

    PubMed  CAS  Google Scholar 

  • Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G (2003) PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 116: 1551–1562

    PubMed  CAS  Google Scholar 

  • Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 267: 1569–1575

    PubMed  CAS  Google Scholar 

  • Bannister A, Zegerman P, Partridge J, Miska E, Thomas J, Allshire R, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124

    PubMed  CAS  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science 291: 447–450

    PubMed  CAS  Google Scholar 

  • Beneke S, Diefenbach J, Burkle A (2004) Poly(ADP-ribosyl)ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer 111: 813–818

    PubMed  CAS  Google Scholar 

  • Blander G and Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73: 417–435

    Google Scholar 

  • Bonicalzi ME, Vodenicharov M, Coulombe M, Gagne JP, Poirier GG (2003) Alteration of poly(ADP-ribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases. Biol Cell 95: 635–644

    PubMed  CAS  Google Scholar 

  • Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31: 446–454

    PubMed  CAS  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015

    PubMed  CAS  Google Scholar 

  • Bryant HE and Helleday T (2004) Poly(ADP-ribose) polymerase inhibitors as potential chemotherapeutic agents. Biochem Soc Trans 32: 959–961

    PubMed  CAS  Google Scholar 

  • Burkle A (2001) Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 23: 795–806

    PubMed  CAS  Google Scholar 

  • Burkle A (2005) Poly(ADP-ribose). The most elaborate metabolite o fNAD+. Febs J 272: 4576–4589

    PubMed  Google Scholar 

  • Burkle A, Brabeck C, Diefenbach J, Beneke S (2005) The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol 37: 1043–1053

    PubMed  Google Scholar 

  • Cardenas-Corona M, Jacobson E, Jacobson M (1987) Endogenous polymers of ADP-ribose are associated with the nuclear matrix. J Biol Chem 262: 14863–14866

    PubMed  CAS  Google Scholar 

  • Chang P, Jacobson MK, Mitchison TJ (2004) Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432: 645–649

    PubMed  CAS  Google Scholar 

  • Chiarugi A and Moskowitz MA (2002) Cell biology. PARP-1 – a perpetrator of apoptotic cell death? Science 297: 200–201

    Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390–392

    PubMed  CAS  Google Scholar 

  • Curtin NJ (2006) PARP inhibitors and cancer therapy. In: Bürkle A (ed) Poly(ADP-Ribosyl)ation. Landes Bioscience, Georgetown, pp 218–233

    Google Scholar 

  • Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S, Webber SE, Durkacz BW, Calvert HA, Hostomsky Z, Newell DR (2004) Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 10: 881–889

    PubMed  CAS  Google Scholar 

  • D’Amours, D, Desnoyers S, D’Silva, I, Poirier G (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342: 249–268

    PubMed  CAS  Google Scholar 

  • Davidovic L, Vodenicharov M, Affar EB, Poirier GG (2001) Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268: 7–13

    PubMed  CAS  Google Scholar 

  • de Murcia G, Huletsky A, Lamarre D, Gaudreau A, Pouyett J, Daune M, Poirier G (1986) Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J Biol Chem 261: 7011–7017

    PubMed  Google Scholar 

  • de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A 94: 7303–7307

    PubMed  Google Scholar 

  • Decker P, Muller S (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3: 275–283

    PubMed  CAS  Google Scholar 

  • Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR (2000) Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 6: 2860–2867

    PubMed  CAS  Google Scholar 

  • Diefenbach J, Burkle A (2005) Introduction to poly(ADP-ribose) metabolism. Cell Mol Life Sci 62: 721–730

    PubMed  CAS  Google Scholar 

  • Earle E, Saxena A, MacDonald A, Hudson DF, Shaffer LG, Saffery R, Cancilla MR, Cutts SM, Howman E, Choo KH (2000) Poly(ADP-ribose) polymerase at active centromeres and neocentromeres at metaphase. Hum Mol Genet 9: 187–194

    PubMed  CAS  Google Scholar 

  • Ferro A, Olivera B (1982) Poly(ADP-ribosylation) in vitro. J Biol Chem 257: 7808–7813

    PubMed  CAS  Google Scholar 

  • Gagne JP, Hunter JM, Labrecque B, Chabot B, Poirier GG (2003) A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochem J 371: 331–340

    PubMed  CAS  Google Scholar 

  • Galande S, Kohwi-Shigematsu T (1999) Poly(ADP-ribose) Polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 274: 20521–20528

    PubMed  CAS  Google Scholar 

  • Graziani G, Szabo C (2005) Clinical perspectives of PARP inhibitors. Pharmacol Res 52: 109–118

    PubMed  CAS  Google Scholar 

  • Griffin RJ, Pemberton LC, Rhodes D, Bleasdale C, Bowman K, Calvert AH, Curtin NJ, Durkacz BW, Newell DR, Porteous JK et al (1995) Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug Des 10: 507–514

    PubMed  CAS  Google Scholar 

  • Hanai S, Uchida M, Kobayashi S, Miwa M, Uchida K (1998) Genomic organization of Drosophila poly(ADP-ribose) polymerase and distribution of its mRNA during development. J Biol Chem 273: 11881–11886

    PubMed  CAS  Google Scholar 

  • Hassa P, Haenni S, Buerki C, Meier N, Lane W, Owen H, Gersbach M, Imhof R, Hottiger M (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-κB-dependent transcription. J Biol Chem 280: 40450–40464

    PubMed  CAS  Google Scholar 

  • Hassa PO, Hottiger MO (2002) The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 59: 1534–1553

    PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196

    PubMed  CAS  Google Scholar 

  • Huletsky A, de Murcia G, Muller S, Hengartner M, Menard L, Lamarre D, Poirier G (1989) The effect of Poly(ADP-ribosyl)ation on native and H1-depleted chromatin. J Biol Chem 264: 8878–8886

    PubMed  CAS  Google Scholar 

  • Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L (2000) Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 65: 297–302

    PubMed  CAS  Google Scholar 

  • Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4: 421–440

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080

    PubMed  CAS  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580

    PubMed  CAS  Google Scholar 

  • Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P, Campisi J (2001) TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J Biol Chem 276: 35891–35899

    PubMed  CAS  Google Scholar 

  • Kanai M, Tong WM, Sugihara E, Wang ZQ, Fukasawa K, Miwa M (2003) Involvement of poly(ADP-Ribose) polymerase 1 and poly(ADP-Ribosyl)ation in regulation of centrosome function. Mol Cell Biol 23: 2451–2462

    PubMed  CAS  Google Scholar 

  • Karras G, Kustatscher G, Buhecha H, Allen M, Pugieux C, Sait F, Bycroft M, Ladurner A (2005) The macro domain is an ADP-ribose binding module. EMBO J 24: 1911–1920

    PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146: 917–928

    PubMed  CAS  Google Scholar 

  • Kim MY, Mauro S, Gevry N, Lis J, Kraus WL (2004) NAD+-dependent modulation of chromatin strucuture and tanscription by nucleosome binding properties of PARP-1. Cell 119: 803–814

    PubMed  CAS  Google Scholar 

  • Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: PAR-laying’’ NAD+ into a nuclear signal. Genes Dev 19: 1951–1967

    PubMed  CAS  Google Scholar 

  • Kim MY, Woo EM, Chong YT, Homenko DR, Kraus WL (2006) Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the DNA binding and transactivation activities of the receptor. Mol Endocrinol

    Google Scholar 

  • Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P (2006) Control of AIF-mediated Cell Death by the Functional Interplay of SIRT1 and PARP-1 in Response to DNA Damage. Cell Cycle 5

    Google Scholar 

  • Kraus WL, Lis J (2003) PARP goes transcription. Cell 113: 677–683

    PubMed  CAS  Google Scholar 

  • Krupitza G, Cerutti P (1989) Poly(ADP-ribosylation) of histones in intact human keratinocytes. Biochemistry 28: 4054–4060

    PubMed  CAS  Google Scholar 

  • Kun E, Kirsten E, Ordahl CP (2002) Coenzymatic activity of randomly broken or intact double-stranded DNAs in auto and histone H1 trans-poly(ADP-ribosylation), catalyzed by poly(ADP-ribose) polymerase (PARP I). J Biol Chem 277: 39066–39069

    PubMed  CAS  Google Scholar 

  • Kun E, Kirsten E, Mendeleyev J, Ordahl CP (2004) Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP. Biochemistry 43: 210–216

    PubMed  CAS  Google Scholar 

  • Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner A (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12: 390–392

    Google Scholar 

  • Lachner M, O’Carroll, D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120

    PubMed  CAS  Google Scholar 

  • Li B, Navarro S, Kasahara N, Comai L (2004) Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 279: 13659–13667

    PubMed  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128

    PubMed  CAS  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148

    PubMed  CAS  Google Scholar 

  • Mabley JG, Suarez-Pinzon WL, Hasko G, Salzman AL, Rabinovitch A, Kun E, Szabo C (2001) Inhibition of poly (ADP-ribose) synthetase by gene disruption or inhibition with 5-iodo-6-amino-1,2-benzopyrone protects mice from multiple-low-dose-streptozotocin-induced diabetes. Br J Pharmacol 133: 909–919

    PubMed  CAS  Google Scholar 

  • Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004) Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem 11: 873–885

    PubMed  CAS  Google Scholar 

  • Malanga M, Atorino L, Tramontano F, Farina B, Quesada P (1998) Poly(ADP-ribose) binding properties of histone H1 variants. Biochim Biophys Acta 1399: 154–160

    PubMed  CAS  Google Scholar 

  • Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96: 5774–5779

    PubMed  CAS  Google Scholar 

  • Masutani M, Nakagama H, Sugimura T (2003) Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 38: 339–348

    PubMed  CAS  Google Scholar 

  • Masutani M, Gunji A, Tsutsumi M, Ogawa K, Kamada N, Shirai T, Jishage K, Nakagama H, Sugimura T (2005) Role of poly-ADP-ribosylation in cancer development. In: Burkle A (ed) Poly(ADP-Ribosyl)ation? Landes Bioscience, Georgetown, TX

    Google Scholar 

  • Mathis G, Althaus F (1987) Release of core DNA from nucleosomal core particles following (ADP-ribose)n-modification in vitro. Biochem Biophys Res Commun 143: 1049–1054

    PubMed  CAS  Google Scholar 

  • Minaga T, Kun E (1983a) Probable helical conformation of poly(ADP-ribose). The effect of cations on spectral properties. J Biol Chem 258: 5726–5730

    CAS  Google Scholar 

  • Minaga T, Kun E (1983b) Spectral analysis of the conformation of polyadenosine diphosphoribose. Evidence indicating secondary structure. J Biol Chem 258: 725–730

    CAS  Google Scholar 

  • Miwa M, Hanai S, Poltronieri P, Uchida M, Uchida K (1999) Functional analysis of poly(ADP-ribose) polymerase in Drosophila melanogaster. Mol Cell Biochem 193: 103–107

    PubMed  CAS  Google Scholar 

  • Moazed D (2001) Common themes in mechanisms of gene silencing. Mol Cell 8: 489–498

    PubMed  CAS  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563

    PubMed  CAS  Google Scholar 

  • Oei SL, Shi Y (2001) Transcription factor Yin Yang 1 stimulates poly(ADP-ribosyl)ation and DNA repair. Biochem Biophys Res Commun 284: 450–454

    PubMed  CAS  Google Scholar 

  • Ogata N, Ueda K, Kawaichi M, Hayaishi O (1981) Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nulcei. J Biol Chem 256: 4135–4137

    PubMed  CAS  Google Scholar 

  • Ohashi S, Kanai M, Hanai S, Uchiumi F, Maruta H, Tanuma S, Miwa M (2003) Subcellular localization of poly(ADP-ribose) glycohydrolase in mammalian cells. Biochem Biophys Res Commun 307: 915–921

    PubMed  CAS  Google Scholar 

  • Oliver AW, Amé JC, Roe SM, Good V, de Murcia G, Pearl LH (2004) Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res 32: 456–464

    PubMed  CAS  Google Scholar 

  • Oliver FJ, Menissier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S, de la Rubia G, Stoclet JC, de Murcia G (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18: 4446–4454

    PubMed  CAS  Google Scholar 

  • Panzeter PL, Realini CA, Althaus FR (1992) Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 31: 1379–1385

    PubMed  CAS  Google Scholar 

  • Parsons XH, Garcia SN, Pillus L, Kadonaga JT (2003) Histone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex. Proc Natl Acad Sci U S A 100: 1609–1614

    PubMed  CAS  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771–776

    PubMed  CAS  Google Scholar 

  • Pillai J, Isbatan A, Imai S-I, Gupta M (2005) Poly(ADP-ribose) Polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2α deacetylase activity. J Biol Chem 280: 43121–43130

    PubMed  CAS  Google Scholar 

  • Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275: 40974–40980

    PubMed  CAS  Google Scholar 

  • Poirier G, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P (1982) Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci U S A 79: 3423–3427

    PubMed  CAS  Google Scholar 

  • Rapizzi E, Fossati S, Moroni F, Chiarugi A (2004) Inhibition of poly(ADP-ribose) glycohydrolase by gallotannin selectively up-regulates expression of proinflammatory genes. Mol Pharmacol 66: 890–898

    PubMed  CAS  Google Scholar 

  • Realini C, Althaus F (1992) Histone shuttling by poly(ADP-ribosylation). J Biol Chem 267: 18858–18865

    PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101: 15998–16003

    PubMed  CAS  Google Scholar 

  • Rolli V, Ruf A, Augustin A, Schulz GE, Ménissier-de Murcia J, de Murcia G (2000) Poly(ADP-ribose) polymerase: structure and function. In: de Murcia G, Shall S (eds) From DNA damage and stress signalling to cell death: poly ADP-ribosylation reactions. Oxford University Press, New York, pp 35–79

    Google Scholar 

  • Rouleau M, Aubin R, Poirier G (2004) Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Science 117: 815–825

    PubMed  CAS  Google Scholar 

  • Ruf A, Mennissier de Murcia J, de Murcia G, Schulz GE (1996) Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc Natl Acad Sci U S A 93: 7481–7485

    PubMed  CAS  Google Scholar 

  • Ruf A, de Murcia G, Schulz GE (1998) Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 37: 3893–3900

    PubMed  CAS  Google Scholar 

  • Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 273: 14461–14467

    PubMed  CAS  Google Scholar 

  • Saxena A, Saffery R, Wong L, Kalitsis P, Choo KHA (2002a) Centromere proteins Cenpa, Cenpb, and Bub3 interact with Poly(ADP-ribose) Polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem 277: 26921–26926

    CAS  Google Scholar 

  • Saxena A, Wong L, Kalitsis P, Earle E, Schaffer L, Choo KHA (2002b) Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb, Bub3, but not Cenpc. Hum Mol Genet 11: 2319–2329

    CAS  Google Scholar 

  • Shall S (1975) Proceedings: Experimental manipulation of the specific activity of poly(ADP-ribose) polymerase. J Biochem (Tokyo) 77:2p.

    CAS  Google Scholar 

  • Shall S, de Murcia G (2000) Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 460: 1–15

    PubMed  CAS  Google Scholar 

  • Shibata A, Kamada N, Masumura K, Nohmi T, Kobayashi S, Teraoka H, Nakagama H, Sugimura T, Suzuki H, Masutani M (2005) Parp-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent. Oncogene 24: 1328–1337

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91: 1033–1042

    PubMed  CAS  Google Scholar 

  • Smith HM, Grosovsky AJ (1999) PolyADP-ribose-mediated regulation of p53 complexed with topoisomerase I following ionizing radiation. Carcinogenesis 20: 1439–1443

    PubMed  CAS  Google Scholar 

  • Smith S (2001) The world according to PARP. Trends Biochem Sci 26: 174–179

    PubMed  CAS  Google Scholar 

  • Smith S, de Lange T (1999) Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci 112(Pt 21): 3649-3656

    PubMed  CAS  Google Scholar 

  • Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484–1487

    PubMed  CAS  Google Scholar 

  • Suto MJ, Turner WR, Arundel-Suto CM, Werbel LM, Sebolt-Leopold JS (1991) Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des 6: 107–117

    PubMed  CAS  Google Scholar 

  • Szabo C (1998) Role of poly(ADP-ribose)synthetase in inflammation. Eur J Pharmacol 350: 1–19

    PubMed  CAS  Google Scholar 

  • Tanuma S, Johnson GS (1983) ADP-ribosylation of nonhistone high mobility group proteins in intact cells. J Biol Chem 258: 4067–4070

    PubMed  CAS  Google Scholar 

  • Tao M, Park CH, Bihovsky R, Wells GJ, Husten J, Ator MA, Hudkins RL (2006) Synthesis and structure-activity relationships of novel poly(ADP-ribose) polymerase-1 inhibitors. Bioorg Med Chem Lett 16: 938–942

    PubMed  CAS  Google Scholar 

  • Tentori L, Leonetti C, Scarsella M, d’Amati, G, Portarena I, Zupi G, Bonmassar E, Graziani G (2002a) Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. Blood 99: 2241–2244

    CAS  Google Scholar 

  • Tentori L, Portarena I, Graziani G (2002b) Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 45: 73–85

    CAS  Google Scholar 

  • Thibeault L, Hengartner M, Lagueux J, Poirier G, Muller S (1992) Rearrangements of the nucleosome structure in chromatin by poly (ADP-ribose). Biochim Biophys Acta 1121: 317–324

    PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230

    PubMed  CAS  Google Scholar 

  • Tulin A, Spradling A (2003) Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299: 560–562

    PubMed  CAS  Google Scholar 

  • Tulin A, Stewart D, Spradling A (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16: 2108–2119

    PubMed  CAS  Google Scholar 

  • Tulin A, Naumova N, Menon A, Spradling A (2006) Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and Sir2-dependent silencing. Genetics 172: 363–371

    PubMed  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159

    PubMed  CAS  Google Scholar 

  • Vidakovic M, Grdovic N, Quesada P, Bode J, Poznanovic G (2004) Poly(ADP-Ribose) Polymerase-1: association with nuclear lamins in rodent liver cells. J Cell Biochem 93: 1155–1168

    PubMed  CAS  Google Scholar 

  • Virag L (2005) PARP-1 and the shape of cell death. In: Burkle A (ed) Poly(ADP-Ribosyl)ation. Landes Bioscience, Georgetown, TX

    Google Scholar 

  • Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11: 2347–2358

    PubMed  CAS  Google Scholar 

  • Wells GJ, Bihovsky R, Hudkins RL, Ator MA, Husten J (2006) Synthesis and structure-activity relationships of novel pyrrolocarbazole lactam analogs as potent and cell-permeable inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). Bioorg Med Chem Lett 16: 1151–1155

    PubMed  CAS  Google Scholar 

  • Wesierska-Gadek J, Sauermann G (1988) The effect of poly(ADP-ribose) on interactions of DNA with histones H1, H3 and H4. Eur J Biochem 173: 675–679

    PubMed  CAS  Google Scholar 

  • Wesierska-Gadek J, Schmid G, Cerni C (1996) ADP-ribosylation of wild-type p53 in vitro: binding of p53 protein to specific p53 consensus sequence prevents its modification. Biochem Biophys Res Commun 224: 96–102

    PubMed  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430: 686–689

    PubMed  CAS  Google Scholar 

  • Yanagisawa J, Ando J, Nakayama J, Kohwi Y, Kohwi-Shigematsu T (1996) A matrix attachment region (MAR)-binding activity due to a p114 kilodalton protein is found only in human breast carcinomas and not in normal and benign breast disease tissues. Cancer Res 56: 457–462

    PubMed  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259–263

    PubMed  CAS  Google Scholar 

  • Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F, Farrar D, Tavoosidana G, Mukhopadhyay R, Kanduri C, Oshimura M, Feinberg A, Lobanenkov V, Klenova E, Ohlsson R (2004) Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36: 1105–1110

    PubMed  CAS  Google Scholar 

  • Zhang J (2003) Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays 25: 808–814

    PubMed  CAS  Google Scholar 

  • Zingarelli B, Salzman AL, Szabo C (1998) Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 83: 85–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wacker, D.A., Frizzell, K.M., Zhang, T., Kraus, W.L. (2007). Regulation of Chromatin Structure and Chromatin-Dependent Transcription by Poly(Adp-Ribose) Polymerase-1. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_3

Download citation

Publish with us

Policies and ethics