Skip to main content

Xylanases: Molecular Properties and Applications

  • Chapter
Book cover Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.K., Kimura, T., Sakka, K. and Ohmiya, K. (2001) The multidomain xylanase Xyn10B as a cellulose-binding protein in Clostridium stercorarium. FEMS Microbiol. Lett. 198, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Arias, M.E., Arenas, M., Rodríguez, J., Soliveri, J., Ball, A.S. and Hernández, M. (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl. Environ. Microbiol. 69, 1953–1958.

    Article  PubMed  CAS  Google Scholar 

  • Bajpai, P. (2004) Biological bleaching of chemical pulps. Crit. Rev. Biotechnol. 24, 1–58.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E.A., Belaich, J.P., Shoham, Y. and Lamed, R. (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58, 521–554.

    Article  PubMed  CAS  Google Scholar 

  • Bedford, M.R. and Classen, H.L. (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chicks. In: Visser, J., Beldman, G., Kusters-van Someren, M.A., Voragen, A.G.J. (eds) Xylans and xylanases. Elsevier, Amsterdam, pp. 361–370.

    Google Scholar 

  • Beg, Q.K., Kapoor, M., Mahajan, L. and Hoondal, G.S. (2001) Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338.

    Article  CAS  Google Scholar 

  • Bhat, M.K. (2000) Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383.

    Article  PubMed  CAS  Google Scholar 

  • Biely, P. (1985) Microbial xylanolytic systems. Trends Biotechnol. 3, 286–290.

    Article  CAS  Google Scholar 

  • Biely, P., Vršanská, M., Tenkanen, M. and Kluepfel, D. (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J. Biotechnol. 57, 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Black, G.W., Hazlewood, G.P., Millward-Sadler, S.J., Laurie, J.I. and Gilbert, H.J. (1995) A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307, 191–195.

    PubMed  CAS  Google Scholar 

  • Blanco, A., Díaz, P., Zueco, J., Parascandola, P. and Pastor, F.I.J. (1999) A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145, 2163–2170.

    PubMed  CAS  Google Scholar 

  • Boraston, A.B., Bolam, D.N., Gilbert, H.J. and Davies, G.J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781.

    Article  PubMed  CAS  Google Scholar 

  • Borneman, W.S., Ljungdahl, L.G., Hartley, R.D. and Akin, D.E. (1993) Feruloyl and p -coumaroyl esterases from the anaerobic fungus Neocallimastix strain MC-2: properties and functions in plant cell wall degradation. In: Coughlan M.P and Hazlewood G.P (eds) Hemicelluloses and hemicellulases. Portland Press, London and Chapel Hill, pp. 85–102.

    Google Scholar 

  • Bourbonnais, R., Paice, M.G., Freiermuth, B., Bodie, E. and Borneman, S. (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63, 4627–4632.

    PubMed  CAS  Google Scholar 

  • Buchert, J., Bergnor, E., Lindblad, G., Viikari, L. and Ek, M. (1997) Significance of xylan and glucomannan in the brightness reversion of kraft pulps. Tappi J. 80(6): 165–171.

    Google Scholar 

  • Clarke, J.H., Rixon, J.E., Ciruela, A., Gilbert, H.J. and Hazlewood, G.P. (1997) Family-10 and family-11 xylanases differ in their capacity to enhance the bleachability of hardwood and softwood paper pulps. Appl. Microbiol. Biotechnol. 48, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Collins, T., Gerday, C. and Feller, G. (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23.

    Article  PubMed  CAS  Google Scholar 

  • Coughlan, M.P. and Hazlewood, G.P. (1993) β-1,4-D-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17, 259–289.

    PubMed  CAS  Google Scholar 

  • Coughlan, M.P., Tuohy, M.G., Filho, E.X.F., Puls, J., Claeyssens, M., Vrsanská, M. and Hughes, M.M. (1993) Enzymological aspects of microbial hemicellulases with emphasis on fungal systems. In: Coughlan M.P and Hazlewood G.P (eds) Hemicelluloses and hemicellulases. Portland Press, London and Chapel Hill, pp. 53–84.

    Google Scholar 

  • Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert, H.J., Davies, G.S., Henrissat, B., Svensson. B. (eds) Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, pp. 3–12.

    Google Scholar 

  • Christov, L., Biely, P., Kalogeris, E., Christakopoulos, P., Prior, B.A. and Bhat, M.K. (2000) Effects of purified endo- β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J. Biotechnol. 83, 231–244.

    Article  PubMed  CAS  Google Scholar 

  • Diebold, G., Mosenthin, R., Sauer, W.C., Dugan, M.E.R. and Lien, K.A. (2005) Supplementation of xylanase and phospholipase to wheat-based diets for weaner pigs. J. Anim. Physiol. Anim. Nutr. 89, 316–325.

    Article  CAS  Google Scholar 

  • De Vries, R.P., Kester, H.C.M., Poulsen, C.H., Benen, J.A.E. and Visser, J. (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr. Res. 327, 401–410.

    Article  PubMed  Google Scholar 

  • De Vries, R.P. and Visser, J. (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522.

    Article  Google Scholar 

  • Elegir, G., Sykes, M. and Jeffries, T.W. (1995) Differential and synergistic action of Streptomyces endoxylanases in prebleaching of kraft pulps. Enzyme Microb. Technol. 17, 954–959.

    CAS  Google Scholar 

  • Emami, K., Nagy, T., Fontes, C.M.G.A., Ferreira, L.M.A. and Gilbert, H.J. (2002) Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11. J. Bacteriol. 184, 4124–4133.

    Article  PubMed  CAS  Google Scholar 

  • Fontes, C.M.G.A., Gilbert, H.J., Hazlewood, G.P., Clarke, J.H., Prates, J.A.M., McKie, V.A., Nagy, T., Fernandes, T.H. and Ferreira, L.M.A. (2000) A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146, 1959–1967.

    PubMed  CAS  Google Scholar 

  • Fujimoto, Z., Kuno, A., Kaneko, S., Yoshida, S., Kobayashi, H., Kusakabe, I. and Mizuno, H. (2000) Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. J. Mol. Biol. 300, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Gallardo, O., Diaz, P. and Pastor, F.I.J. (2003) Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61, 226–233.

    PubMed  CAS  Google Scholar 

  • Ganga, M.A., Piñaga, F., Vallés, S., Ramón, D. and Querol, A. (1999) Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int. J. Food Microbiol. 47, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, H.J. and Hazlewood, G.P. (1993) Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187–194.

    CAS  Google Scholar 

  • Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller Jr., R.C. and Warren, R.A.J. (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315.

    PubMed  CAS  Google Scholar 

  • Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316.

    PubMed  CAS  Google Scholar 

  • Henrissat, B. and Bairoch, A. (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316, 695–696.

    PubMed  Google Scholar 

  • Honda, Y. and Kitaoka, M. (2004) A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J. Biol. Chem. 279, 55097:55103.

    Article  PubMed  CAS  Google Scholar 

  • Irwin, D., Jung, E.D. and Wilson, D.B. (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60, 763–770.

    PubMed  CAS  Google Scholar 

  • Jiang, Z.Q., Deng, W., Li, X.T., Ai, Z.L., Li, L.T. and Kusakabe, I. (2005) Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. Enzyme Microb. Technol. 36, 923–929.

    Article  CAS  Google Scholar 

  • Jun, H.S., Ha, J.K., Malburg Jr., L.M., Gibbins, A.M.V. and Forsberg, C.W. (2003) Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can. J. Microbiol. 49, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Kataeva, I.A., Seidel III, R.D., Shah, A., West, L.T., Li, X.L. and Ljungdahl, L.G. (2002) The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl. Environ. Microbiol. 68, 4292–4300.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. O., Denman, S.E., Mackie, R.I., Morrison, M., Rae, A.L., Attwood, G.T. and McSweeney, C.S. (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27, 663–693.

    Article  PubMed  CAS  Google Scholar 

  • Kolenová, K., Vršanská. M. and Biely, P. (2005) Purification and characterization of two minor endo- β-1,4-xylanases of Schizophyllum commune. Enzyme. Microb. Technol. 36, 903–910.

    Article  CAS  Google Scholar 

  • Kubata, B.K., Takamizawa, K., Kawai, K., Suzuki, T. and Horitsu, H. (1995) Xylanase IV, an exoxylanase of Aeromonas caviae ME-1 which produces xylotetraose as the only low-molecular-weight oligosaccharide from xylan. Appl. Environ. Microbiol. 61, 1666–1668.

    PubMed  CAS  Google Scholar 

  • Kulkarni, N., Shendye, A. and Rao, M. (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456.

    Article  PubMed  CAS  Google Scholar 

  • Larson, S.B., Day, J., Barba de la Rosa, A.P., Keen, N.T. and McPherson, A. (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: Implications for catalysis. Biochemistry 42, 8411:8422.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. (1997) Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.E., Lowe, S.E., Henrissat, B. and Zeikus, J.G. (1993) Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J. Bacteriol. 175, 5890–5898.

    PubMed  CAS  Google Scholar 

  • Linder, M. and Teeri, T.T. (1997) The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15–28.

    Article  CAS  Google Scholar 

  • Linko, Y.Y., Javanainen, P. and Linko, S. (1997) Biotechnology of bread baking. Trends Food Sci. Technol. 8, 339–344.

    Article  CAS  Google Scholar 

  • Lo Leggio, L., Jenkins, J., Harris, G.W., Pickersgill, R.W. (2000) X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Proteins 41, 362–373.

    Article  CAS  Google Scholar 

  • Lynd, L.R., Weimer, P.J., van Zyl, W.H. and Pretorius, I.S. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.

    Article  PubMed  CAS  Google Scholar 

  • Matte, A. and Forsberg, C.W. (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 58, 157–168.

    PubMed  CAS  Google Scholar 

  • Monfort, A., Blasco, A., Prieto, J.A. and Sanz, P. (1996) Combined expression of Aspergillus nidulans endoxylanase X24 and Aspergillus oryzae α-amylase in industrial bakers’s yeasts and their use in bread making. Appl. Environ. Microbiol. 62, 3712–3715.

    PubMed  CAS  Google Scholar 

  • Montiel, M.D., Rodríguez, J., Pérez-Leblic, M.I., Hernández, M., Arias, M.E. and Copa-Patiño, J.L. (1999) Screeening of mannanase in actinomycetes and their potential application in the biobleaching of pine kraft pulps. Appl. Microbiol. Biotechnol. 52, 240–245.

    Article  CAS  Google Scholar 

  • Nelson, S.L., Wong, K.K.Y., Saddler, J.N. and Beatson, R.P. (1995) The use of xylanase for peroxide bleaching of kraft pulps derived from different softwood species. Pulp Paper Can. 96 (7): 42–45.

    Google Scholar 

  • Pell, G., Szabo, L., Charnock, S.J., Xie, H., Gloster, T.M., Davies, G.J. and Gilbert, H.J. (2004a)Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C. J. Biol. Chem. 279, 11777–11788 .

    Article  CAS  Google Scholar 

  • Pell, G., Taylor, E.J., Gloster, T.M., Turkenburg, J.P., Fontes, C.M.G.A., Ferreira, L. M. A., Nagy, T., Clark, S. J., Davies, G.J. and Gilbert, H. J. (2004b)The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279, 9597–9605.

    Article  CAS  Google Scholar 

  • Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A. and Amorim, D.S. (2005) Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591.

    Article  PubMed  CAS  Google Scholar 

  • Puls, J. (1992) α-glucuronidases in the hydrolysis of wood xylans. In: Visser, J., Beldman, G., Kusters-van Someren, M.A., Voragen, A.G.J. (eds) Xylans and xylanases. Elsevier, Amsterdam, pp. 213–224.

    Google Scholar 

  • Roncero, M.B., Torres, A.L., Colom, J.F. and Vidal, T. (2000) Effects of xylanase treatment on fibre morphology in totally chlorine free bleaching (TCF) of Eucalyptuspulp. Process Biochem. 36, 45–50.

    Article  CAS  Google Scholar 

  • Roncero, M.B., Torres, A.L., Colom, J.F. and Vidal, T. (2003) Effect of xylanase on ozone bleaching kinetics and properties of Eucalyptus kraft pulp. J. Chem. Technol. Biotechnol. 78, 1023–1031

    Article  CAS  Google Scholar 

  • Ruiz-Arribas, A., Fernández-Abalos, J.M., Sánchez, P., Garda, A.L. and Santamaría, R.I. (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl. Environ. Microbiol. 61, 2414–2419.

    PubMed  CAS  Google Scholar 

  • Rye, C.S. and Whithers, S.G. (2000) Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4, 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Sabini, E., Wilson, K.S., Danielsen, S., Schulein, M. and Davies, G.J. (2001) Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display ( 2,5 )B conformations at the active centre. Acta Crystallogr. D57: 1344–1347.

    Article  PubMed  CAS  Google Scholar 

  • Saha, B.C. (2000) α-l-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18, 403–423.

    Article  PubMed  CAS  Google Scholar 

  • Shallom, D. and Shoham, Y (2003) Microbial hemicellulases. Curr. Op. Microbiol. 6, 219–228.

    Article  CAS  Google Scholar 

  • Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Pérez-Boada, M., Martínez, M.J., Sigoillot, J.C., Asther, M., Colom, J.F. and Martínez, A.T. (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115, 333–343.

    Article  PubMed  CAS  Google Scholar 

  • Sunna, A. and Antranikian, G. (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.

    Article  CAS  Google Scholar 

  • Sunna, A., Gibbs, M.D. and Bergquist, P.L. (2000) The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem. J. 346, 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Suurnäkki, A., Clark, T.A., Allison, R.W., Viikari, L. and Buchert, J. (1996) Xylanase- and mannanase-aided ECF and TCF bleaching. Tappi. J. 79(7): 111–117.

    Google Scholar 

  • Tomme, P., Boraston, A., McLean, B., Kormos, J., Creagh, A.L., Sturch, K., Gilkes, N.R., Haynes, C.A., Warren, R.A.J. and Kilburn, D.G. (1998) Characterization and affinity applications of cellulose-binding domains. J. Chromatogr. B 715, 283–296.

    Article  CAS  Google Scholar 

  • Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G. and van Beeumen, J. (2003) The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. J. Biol. Chem. 278, 7531–7539.

    Article  PubMed  Google Scholar 

  • Vardakou, M., Flint, J., Christakopoulos, P., Lewis, R.J., Gilbert, H.J. and Murray, J.W. (2005) A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J. Mol. Biol. 352, 1060–1067.

    Article  PubMed  CAS  Google Scholar 

  • Vicuña, R., Oyarzùn, E. and Osses, M. (1995) Assessment of various commercial enzymes in the bleaching of radiata pine kraft pulps. J. Biotechnol. 40, 163–168.

    Article  Google Scholar 

  • Viikari, L., Kantelinen, A., Sundquist, J. and Linko, M. (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335–350.

    Article  CAS  Google Scholar 

  • Williamson, G., Kroon, P.A. and Faulds, C.B. (1998) Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology. 144, 2011–2023.

    Article  PubMed  CAS  Google Scholar 

  • Wong, K.K.Y., Tan, L.U.L. and Saddler, J.N. (1988) Multiplicity of β-1,4-xylanase in micro-organisms: functions and applications. Microbiol. Rev. 52, 305–317

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Javier, P.F., Óscar, G., Sanz-Aparicio, J., Díaz, P. (2007). Xylanases: Molecular Properties and Applications. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_5

Download citation

Publish with us

Policies and ethics