Skip to main content

Subtilisin

  • Chapter
Book cover Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almog, O., Gallagher, D.T., Ladner, J.E., Strausberg, S., Alexander, P., Bryan, P. and Gilliland, G.L. (2002) Structural basis of thermostability. Analysis of stabilizing mutations in subtilisin BPN’. J Biol Chem 277, 27553–27558.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, P.N. (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543, 203–222.

    PubMed  CAS  Google Scholar 

  • Doores, K J. and Davis, B.G. (2005) “Polar patch” proteases as glycopeptiligases. Chem Commun 168–170.

    Google Scholar 

  • Gros, P., Betzel, C.H., Dauter, Z., Wilson, K.S. and Hol, W.G.J. (1989) Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98 Å resolution and comparison of two crystal forms that differ in calcium content. J Mol Biol 210, 347–367.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R., Beg, Q.K., Khan, S. and Chauhan, B. (2002a) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60, 381–395.

    Article  CAS  Google Scholar 

  • Gupta, R., Beg, Q.K. and Lorenz, P. (2002b) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59, 15–32.

    Article  CAS  Google Scholar 

  • Jarnagin, A.S. and Ferrari, E. (1992) Extra-cellular enzymes: gene regulation and structure function relationship studies. Biotechnolog 22, 189–217.

    CAS  Google Scholar 

  • Kidd, R.D., Sears, P., Huang, D.H., Witte, K., Wong, C.H. and Farber, G.K. (1999) Breaking low barrier hydrogen bond in a serine protease. Protein Sci 8, 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, R.C., Davis, B.G. and Jones, J.B. (2000) Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increase in esterase activity. Bioorg Med Chem 8, 1537–1544.

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne, T., Gerday, C. and Feller, G. (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543, 1–10.

    PubMed  CAS  Google Scholar 

  • Martsumoto, K., Davis, B.G. and Jones, J.B. (2001) Glycosylation of the primary binding pocket of a subtilisin protease causes remarkable broadening in stereospecificity in peptide synthesis. Chem Commun 903–904.

    Google Scholar 

  • Martsumoto, K., Davis, B.G. and Jones, J.B. (2002) Chemically modified “polar patch” mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts. Chemistry 8, 4129–4137.

    Article  Google Scholar 

  • Maurer, K-H. (2004) Detergent proteases. Curr Opin Biotechnol 15, 330–334.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, K., Wintrode, P.L., Grayling, R.A., Rubingh, D.N. and Arnold, F.H. (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297, 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  • Moree, W.J., Sears, P., Kawashiro, K., Witte, K. and Wong, C.H. (1997) Exploitation of subtilisin BPN’ as catalyst for the synthesis of peptides containing noncoded amino acids, peptide mimetics and peptide conjugates. J Amer Chem Soc 119, 3942–3947.

    Article  CAS  Google Scholar 

  • Perona, J.J. and Craik, C.S. (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4, 337–60.

    Article  PubMed  CAS  Google Scholar 

  • Polgàr, L. (2005) The catalytic triad of serine peptidases. CMLS, Cell Mol Life Sci 62, 2161–2172.

    Article  CAS  Google Scholar 

  • Rawlings, N.D. and Barrett, A.J. (1993) Evolutionary families of peptidases. Biochem J 290, 205–18.

    PubMed  CAS  Google Scholar 

  • Savile, C.K., Magliore, V.P. and Kazlauskas, R.J. (2005) Subtilisin-catalyzed resolution of N-Acyl Arylsulfinamides. J Am Chem Soc 127, 2102–2113.

    Google Scholar 

  • Shinde, U. and Inouye, M. (2000) Intramolecular chaperones; polypeptide extensions that modulate protein folding. Semin Cell Dev Biol 11, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Siezen, R.J. and Leunissen, J.A.M. (1997) The superfamily of subtilisin-like serine proteases. Protein Sci 6, 501–523.

    Article  PubMed  CAS  Google Scholar 

  • Stratton, J.R., Pelton, J.G. and Kirsch, J.F. (2001) A novel engineered subtilisin BPN’ lacking a low-barrier hydrogen in the catalytic triad. Biochemistry 40, 10411–10416.

    Article  PubMed  CAS  Google Scholar 

  • Strausberg, S.l., Ruan, B., Fisher, K.E., Alexander, P.A. and Bryan, P.N. (2005) Directed co-evolution of stability and catalytic activity in calcium-free subtilisin. Biochemistr 44, 3272–3279.

    Article  CAS  Google Scholar 

  • Subbian, E., Yabuta, Y. and Shinde, U.P. (2005) Folding pathway mediated by an intramolecular chaperone: intrinsically unstructured propeptide modulates stochastic activation of subtilisin. J Mol Biol 347, 367–383.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, H. and Takahashi, M. (2003) A new approach for alteration of protease functions: pro-sequence engineering. Appl Microbiol Biotechnol 63, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Tindbaek, N., Svendsen, A., Oestergaard, P. sR. and Draborg, H. (2004) Engineering a substrate-specific cold-adapted subtilisin. Protein End Des Sel 17, 149–156.

    Article  CAS  Google Scholar 

  • Wintrode, P.L., Miyazaki, K. and Arnold, F.H. (2000) Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J Biol Chem 275, 31635–31640.

    Article  PubMed  CAS  Google Scholar 

  • Wintrode, P.L., Miyazaki, K. and Arnold, F.H. (2001) Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta 1549, 1–8.

    PubMed  CAS  Google Scholar 

  • Zhao, H. and Arnold, F.H. (1999) Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 12, 47–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Donlon, J. (2007). Subtilisin. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_12

Download citation

Publish with us

Policies and ethics