Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2879 Accesses

Abstract

This chapter discusses the design of the analog-to-digital converter (ADC) of a precision smart temperature sensor. This ADC converts the voltages V BE and ΔV BE (generated using the techniques introduced in the previous chapter) to a digital temperature reading. The chapter starts with an overview of the requirements that have to be met in this application. After a brief overview of different types of ADCs, sigma-delta (ΣΔ) ADCs are shown to be particularly suited for the narrow bandwidth signals found in temperature sensors. The system-level design of first- and second-order ΣΔ modulators and the associated decimation filters is discussed. Since dynamic error correction techniques (such as dynamic element matching) are needed to accurately generate V BE and ΔV BE , special attention is paid to the filtering of the associated dynamic error signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE standard for terminology and test methods for analog-to-digital converters, IEEE Std. 1241–2000, Dec. 2000.

    Google Scholar 

  2. “LM75 data sheet,” National Semiconductor Corp., Feb. 2004, www.national.com.

    Google Scholar 

  3. P. R. van der Meer, G. C. M. Meijer, M. J. Vellekoop, H. M. M. Kerkvliet, and T. J. J. van den Boom, “A temperature-controlled smart surface-acoustic-wave gas sensor,” Sensors and Actuators, vol. 71, no. 1–2, pp. 27–34, Nov. 1998.

    Google Scholar 

  4. R. J. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Conveners, 2nd ed. Boston: Kluwer Academic Publishers, 2003.

    Google Scholar 

  5. G. C. M. Meijer et al., “A three-terminal integrated temperature transducer with microcomputer interfacing,” Sensors and Actuators, vol. 18, pp. 195–206, June 1989.

    Article  Google Scholar 

  6. P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology,” Sensors and Actuators, vol. A21-A23, pp. 636–638, Mar. 1990.

    Google Scholar 

  7. F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A-D conversion,” Sensors and Actuators, vol. 34, pp. 249–256, Sept. 1992.

    Article  Google Scholar 

  8. A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933–937, July 1996.

    Article  Google Scholar 

  9. M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, 1998.

    Article  Google Scholar 

  10. A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston: Kluwer Academic Publishers, 2000.

    Google Scholar 

  11. F. M. L. van der Goes and G. C. M. Meijer, “Sigma-delta versus oscillator-based converters in low-cost accurate sensor systems,” in Proc. IMTC, June 1996, pp. 1151–1153.

    Google Scholar 

  12. S. Ouzounov, E. Roza, H. Hegt, G. van der Weide, and A. van Roermund, “Design of high-performance asynchronous sigma delta modulators with a binary quantizer with hysteresis,” in Proc. CICC, Oct. 2004, pp. 181–184.

    Google Scholar 

  13. S. R. Norsworthy, R. Schreier, and G. C. Temes, Eds., Delta-Sigma Data Converters: Theory, Design and Simulation. Piscataway, New York: IEEE Press, 1997.

    Google Scholar 

  14. O. Bajdechi and J. H. Huijsing, Systematic Design of Sigma-Delta Analog-to-Digital Converters. Boston: Kluwer Academic Publishers, 2004.

    MATH  Google Scholar 

  15. R. Schreier and B. Zhang, “Delta-sigma modulators employing continuous-time circuitry,” IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications, vol. 43, no. 4, pp. 324–332, Apr. 1996.

    Article  Google Scholar 

  16. R. J. van der Plassche, “A sigma-delta modulator as an A/D converter,” IEEE Transactions on Circuits and Systems, vol. 25, no. 7, pp. 510–514, July 1978.

    Article  Google Scholar 

  17. J. Márkus, J. Silva, and G. C. Temes, “Theory and applications of incremental ΣΔ converters,” IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications, vol. 51, no. 4, pp. 678–690, Apr. 2004.

    Article  Google Scholar 

  18. J. Robert, G. C. Temes, V. Valencic, R. Dessoulavy, and P. Deval, “A 16-bit low-voltage CMOS A/D converter,” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 2, pp. 157–163, Apr. 1987.

    Article  Google Scholar 

  19. J. Robert and P. Deval, “A second-order high-resolution incremental A/D converter with offset and charge injection compensation,” IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 736–741, June 1988.

    Article  Google Scholar 

  20. O. Feely and L. O. Chua, “The effect of integrator leak in Σ-Δ modulation,” IEEE Transactions on Circuits and Systems, vol. 38, no. 11, pp. 1293–1305, Nov. 1991.

    Article  MATH  Google Scholar 

  21. P. C. de Jong, G. C. M. Meijer, and A. H. M. van Roermund, “A new dithering method for sigma-delta modulators,” Analog Integrated Circuits and Signal Processing, vol. 10, no. 3, pp. 193–204, Aug. 1996.

    Article  Google Scholar 

  22. J. C. Candy, “A use of double integration in sigma delta modulation,” IEEE Transactions on Communications, vol. COM-33, no. 3, pp. 249–258, Mar. 1985.

    Article  Google Scholar 

  23. B. E. Boser and B. A. Wooley, “The design of sigma-delta modulation analog-to-digital converters,” IEEE Journal of Solid-State Circuits, vol. SC-23, no. 6, pp. 1298–1308, Dec. 1988.

    Article  Google Scholar 

  24. G. Temes and J. Steensgaard, “Structural optimization and scaling of delta-sigma modulators,” in Lecture Notes of the EPFL Advanced Engineering Course on Delta Sigma Converters for Telecom, 2000.

    Google Scholar 

  25. C. Lyden, U.S. Patent 5 189 419, Feb. 23, 1993.

    Google Scholar 

  26. C. Lyden, J. Ryan, C. A. Ugarte, J. Kornblum, and F. M. Yung, “A single shot sigma delta analog to digital converter for multiplexed applications,” in Proc. CICC, May 1995, pp. 203–206.

    Google Scholar 

  27. A. W. M. van den Enden and N. A. M. Verhoeckx, Discrete-time signal processing. Upper Saddle River, NJ, USA: Prentice Hall, 1989.

    Google Scholar 

  28. G. v. d. Horn and J. H. Huijsing, Integrated Smart Sensors: Design and Calibration. Boston: Kluwer Academic Publishers, 1998.

    Google Scholar 

  29. P. Malcovati, C. A. Leme, P. O'Leary, F. Maloberti, and H. Baltes, “Smart sensor interface with A/D conversion and programmable calibration,” IEEE Journal of Solid-State Circuits, vol. 29, no. 8, pp. 963–966, Aug. 1994.

    Article  Google Scholar 

  30. W. Lee, “A 4-channel, 18b ΣΔ modulator IC with chopped-offset stabilization,” in Dig. Techn. Papers ISSCC, Feb. 1996, pp. 238–239.

    Google Scholar 

  31. Y.-C. Huang and W.-S. Wey, “Second-order delta-sigma modulation with interfered reference,” IEEE Transactions on Circuits and Systems—Part II: Analog and Digital Signal Processing, vol. 48, no. 2, pp. 192–197, Feb. 2001.

    Article  MATH  Google Scholar 

  32. B. P. D. Signore, D. A. Kerth, N. S. Sooch, and E. J. Swanson, “A monolithic 20-b delta-sigma A/D converter,” IEEE Journal of Solid-State Circuits, vol. 25, no. 6, pp. 1311–1317, Dec. 1990.

    Article  Google Scholar 

  33. C. B. Wang, “A 20-bit 25-khz delta-sigma A/D converter utilizing a frequency-shaped chopper stabilization scheme,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 566–569, Mar. 2001.

    Article  Google Scholar 

  34. M. A. P. Pertijs and J. H. Huijsing, “A sigma-delta modulator with bitstream-controlled dynamic element matching,” in Proc. ESSCIRC, Sept. 2004, pp. 187–190.

    Google Scholar 

  35. M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “Bitstream controlled reference signal generation for a sigma-delta modulator,” U.K. Patent Application 0 411 884.0, 2004.

    Google Scholar 

  36. B. C. Leung and S. Sutarja, “Multibit Σ—Δ A/D converter incorporating a novel class of dynamic element matching techniques,” IEEE Transactions on Circuits and Systems—Part II: Analog and Digital Signal Processing, vol. 39, no. 1, pp. 35–51, Jan. 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Pertijs, M.A., Huijsing, J.H. (2006). SIGMA-DELTA ANALOG-TO-DIGITAL CONVERSION. In: PRECISION TEMPERATURE SENSORS IN CMOS TECHNOLOGY. Analog Circuits and Signal Processing. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5258-8_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5258-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5257-6

  • Online ISBN: 978-1-4020-5258-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics