Skip to main content

PERFORMANCE PARAMETERS OF RF CIRCUITS

  • Chapter
  • 881 Accesses

Part of the book series: Analog Circuits and Signal Processing Series ((ACSP))

Abstract

Interdisciplinarity is essential to RF circuit design. An RF designer is a system designer, an analogue circuit designer, a microwave circuit designer, and a passive and active component designer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Nordholt, Design of High-Performance Negative-Feedback Amplifiers, PhD Thesis, TU Delft, The Netherlands, 1980.

    Google Scholar 

  2. B. Razavi, RF Microelectronics, Prentice Hall, Upper Saddle River, 1998.

    Google Scholar 

  3. K. Kurokawa, “Power Waves and the Scattering Matrix”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-13, no. 2, March 1965.

    Google Scholar 

  4. F. Weinert, “Scattering Parameters Speed Design of High-Frequency Transistor Circuits”, Electronics, vol. 39, no. 18, Sept. 5, 1966.

    Google Scholar 

  5. G. Fredricks, “How to Use S-Parameters for Transistor Circuit Design”, Proceedings IEEE, vol. 14, no. 12, Dec. 1966.

    Google Scholar 

  6. H. W. Froehner, “Quick Amplifier Design with Scattering Parameters”, Electronics, October 16, 1967 [HP Application Note 95, pp. 5–1,511].

    Google Scholar 

  7. E. G. Bodway, “Two-Port Power Flow Analysis Using Generalized S Parameters,” Microwave Journal, vol. 10–6, May 1967 [HP Application Note 95, pp. 6–1~6–9].

    Google Scholar 

  8. R. P. Doland et al., “S-Parameter Techniques for Faster, More Accurate Network Design,” Hewlett-Packard Journal, V18–6, February 1967 [HP Application Note 95 pp.3–l~3–12].

    Google Scholar 

  9. R. W. Anderson, “S-Parameter Techniques for Faster, More Accurate Network Design”, Hewlett-Packard Application Note 95–1, PN 5952–1130. This is a reprint of the article in the Hewlett-Packard Journal, vol. 18, no. 6, February 1967.

    Google Scholar 

  10. P. H. Smith, “Electronic Applications of the Smith Chart in Waveguide, Circuit and Component Analysis”, Noble Publishing Classic Series, ISBN-1–884932–39–8, Georgia, 1995.

    Google Scholar 

  11. G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, ISBN 0–13–581646–7, Prentice Hall, 1984.

    Google Scholar 

  12. D. Pozar, Microwave and RF Wireless Systems, Wiley, New York, 2001.

    Google Scholar 

  13. F. B. Llewellyn, “Some Fundamental Properties of Transmission Systems”, Proceedings of the IRE, March 1952.

    Google Scholar 

  14. I. Bahl and P. Bhartia, Microwave Solid-State Circuits Design, John Willey & Sons, INC, 2003.

    Google Scholar 

  15. C. J. M. Verhoeven, A. van Staveren, G. L. E. Monna, M. H. I. Kouwenhoven and E. Yildiz, Structured Electronic Design, Negative Feedback Amplifiers, Kluwer Academic Publishers, The Netherlands, 2003.

    MATH  Google Scholar 

  16. P. A. Rizzi, Microwave Engineering Passive Circuitry, Prentice Hall, INC, NJ07632, 1998.

    Google Scholar 

  17. A. P. Stern, “Stability and Power Gain of Tuned Transistor Amplifiers”, Proceedings of the IRE, vol. 45, pp. 335–343, March 1957.

    Google Scholar 

  18. E. F. Bolinder, “Survey of Some Properties of Linear Networks”, IRE Transactions on Circuit Theory, September 1957.

    Google Scholar 

  19. J. M. Rollett, “Stability and Power-Gain Invariants of Linear Two-Ports”, IRE Transactions on Circuit Theory, vol. 9, no. 3, pp. 29–32, March 1962.

    Google Scholar 

  20. M. L. Edwards and J. H. Sinsky, “A New Criterion for Linear Two-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2303–2311, December 1992.

    Article  Google Scholar 

  21. G. Lombardi, B. Neri, “Criteria for the Evaluation of Unconditional Stability of Microwave Linear Two-Ports: A Critical Review and New Proof, IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 6, pp. 746–751, June 1999

    Article  Google Scholar 

  22. O. F. Bokk and E. B. Gribov, “Small-Signal Calculation of the Amplitude of the Third-Order Combination Frequency in a Transistor Amplifier”, Telecommunications and Radio Engineering, vol. 24, no. 3, pp. 125–129, March 1969.

    Google Scholar 

  23. K. A. Simons, “The Decibel Relationship between Amplifier Distortion Products”, Proceedings IEEE, no. 7, pp. 1071–1086, July 1970.

    Google Scholar 

  24. M. Akgun and M. J. O. Strutt, “Cross Modulation and Nonlinear Distortion in RF Transistor Amplifiers,” IRE Transactions on Electron Devices, pp. 457–467, October 1959.

    Google Scholar 

  25. B. Ebstein, R. Huenemann and R. Sea, “The Correspondence of Intermodulation and Cross Modulation in Amplifiers and Mixers”, Proceedings of the IEEE, pp. 1514–1516, August 1967, (see comments in pp. 355–357, March 1968).

    Google Scholar 

  26. B. H. Goldberg, “Predict Intermodulation Distortion”, Electronic Design, pp. 76–78, May 1970.

    Google Scholar 

  27. M. E. Goldfarb, “Intermodulation Products,” Microwave Journal, pp. 297–301, May 1985.

    Google Scholar 

  28. L. Sheng, C. Jensen and L. E. Larson, “A Wide-Bandwidth Si/SiGe HBT Direct Conversion Sun-Harmonic Mixer/Downconverter”, IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1329–1337, September 2000.

    Article  Google Scholar 

  29. J. Rudell et al., “An Integrated GSM/DECT Receiver: Design Specifications”, UCB Electronics Research Laboratory Memorandum, Memo no. UCB/ERL M97/82, 1998.

    Google Scholar 

  30. D. Dewitt and A. L. Rossoff, Transistor Electronics, McGraw-Hill, 1957.

    Google Scholar 

  31. C. A. Desoer, “Nonlinear Distortion in Feedback Amplifiers,” IRE Transactions on Circuit Theory, pp. 2–6, March 1962.

    Google Scholar 

  32. D. M. Duncan, “Non-Linearity in Transistor Amplifiers”, Proceedings of the IREE (Australia), pp. 149–157, March 1964.

    Google Scholar 

  33. Y. L. Kuo, “Distortion Analysis of Bipolar Transistor Circuits”, IEEE Transactions on Circuit Theory, vol. CT-20, no. 6, pp. 709–716, November 1973.

    Google Scholar 

  34. G. C. van Slagmaat, “Non-Linear Distortion of Transistorized Amplifiers”, Electronic Applications, vol. 20, no. 4, pp. 159–168, 1959–1960.

    Google Scholar 

  35. N. Wiener, Nonlinear Problems in Random Theory, New York: Technology Press, 1958.

    MATH  Google Scholar 

  36. S. Narayanan, “Transistor Distortion Analysis Using Volterra Series Representation”, Bell System Technical Journal, pp. 991–1024, May/June 1967.

    Google Scholar 

  37. S. A. Maas, Nonlinear Microwave Circuits, Norwood, MA: Artech House, 1988.

    Google Scholar 

  38. P. Wambacq and W. M. C. Sansen, Distortion Analysis of Analog Integrated Circuits, Kluwer Academic Publishers, Boston, 1998.

    Google Scholar 

  39. S. Narayanan, “Intermodulation Distortion of Cascaded Transistors,” IEEE Journal of Solid-State Circuits, vol. SC-4, no. 3, pp. 97–106, Jun 1969.

    Article  Google Scholar 

  40. B. P. Gross, “Calculating the Cascade Intercept Point of Communications Receivers”, Ham Radio, pp. 50–52, August 1980.

    Google Scholar 

  41. D. O. North, “The Absolute Sensitivity of Radio Receivers”, RCA Review, vol. 6, pp. 332–343, January 1928.

    Google Scholar 

  42. H. Rothe and W. Dahlke, “Theory of Noise Fourpoles”, Proceedings IRE, vol. 44, no. 6, pp. 811–818, June 1956.

    Article  Google Scholar 

  43. H. A. Haus et al., “Representation of Noise in Linear Two-ports”, Proceedings IRE, vol. 48, pp. 69–74, January 1960.

    Article  Google Scholar 

  44. H. Hillbrand and P. H. Russer, “An Efficient Method for Computer Aided Noise Analysis of Linear Networks,” IEEE Transactions on Circuits Systems, vol. CAS-23, pp. 235–238, April 1976.

    Google Scholar 

  45. G. D. Vendelin, A. M. Pavio, and U. L. Rhode, Microwave Circuit Design Using Linear and Nonlinear Techniques, New York: Wiley, ch. 2, pp. 93–97, 1990.

    Google Scholar 

  46. A. van der Ziel, Noise in Solid-State Devices and Circuits, New York: Wiley-Interscience, 1986.

    Google Scholar 

  47. T. Lee, Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2003.

    Google Scholar 

  48. F. Friis, “Noise Figure of Radio Receivers”, Proceedings IRE, vol. 32, pp. 419–422, July 1944.

    Google Scholar 

  49. E. Hafner, “The Effect of Noise in Oscillators,” Proceedings IEEE, vol. 54, no. 2, pp. 179–198, February 1966.

    Article  Google Scholar 

  50. W. A. Edson, “Noise in Oscillators”, Proceedings IRE, vol. 48, 1454–1472, August 1960.

    Article  Google Scholar 

  51. J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: 15 Years of Progress”, Proceedings IEEE, vol. 66, no. 9, pp. 1048–1073, September 1978.

    Google Scholar 

  52. L. W. Couch II, Digital and Analog Communication Systems, Prentice Hall International, Inc, Upper Saddle River, NJ 07458, 1997.

    Google Scholar 

  53. C. A. M. Boon, Design of High-Performance Negative-Feedback Oscillators, PhD Thesis, Delft University of Technology, The Netherlands, 1989.

    Google Scholar 

  54. J. R. Westra, High-Performance Oscillators and Oscillation Systems, PhD Thesis, Delft University of Technology, The Netherlands, 1998.

    Google Scholar 

  55. W. Robins, Phase Noise in Signal Sources, London: Peter Peregrinus Ltd, 1982.

    Google Scholar 

  56. D. B. Leeson, “A simple Model of Feedback Oscillator Noise Spectrum”, Proceedings IEEE, pp. 329–330, February 1966.

    Google Scholar 

  57. T. S. Rappaport, Wireless Communications — Principles and Practice, pp. 120, Prentice Hall, INC, Upper Saddle River, NJ 07458, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Tasić, A., Serdijn, W.A., Long, J.R. (2006). PERFORMANCE PARAMETERS OF RF CIRCUITS. In: Adaptive Low-Power Circuits for Wireless Communications. Analog Circuits and Signal Processing Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5250-2_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5250-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5249-1

  • Online ISBN: 978-1-4020-5250-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics