Skip to main content

Abstract

One emerging worldwide vision of communication is that wireless communications and ambient intelligence will be highly advantageous in satisfying our yearning for information at any time and anywhere. Electronics that is sensitive to people’s needs, personalized to their requirements, anticipatory of their behavior and responsive to their presence is one visionary conception of ambient intelligence [1]. Ambient intelligence technologies are expected to combine concepts of ubiquitous computing and intelligent systems. Technological breakthroughs will allow people to integrate electronics into more friendly environments: roll-up displays [2], intelligent mobiles [3], internet-enabled furniture [4]. People will relate to electronics in a more natural and comfortable way than they do now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Philips Research, Ambient Intelligence, http://www.research.philips.com/ technologies/syst_softw/ami.

    Google Scholar 

  2. http://www.research.philips.com/technologies/syst_softw/ami/display.html

    Google Scholar 

  3. Intelligent mobiles: context awareness and Bluetooth, http://www.research. philips.com/profile/people/researchers/intelligentmobiles.html

    Google Scholar 

  4. http://www.research.philips.com/technologies/syst_softw/ami/planet.html.

    Google Scholar 

  5. http://encyclopedia.thefreedictionary.com/Phidippides.

    Google Scholar 

  6. N. Tesla, Patent No. 645576, 1897.

    Google Scholar 

  7. G. Marconi, Patent No. 763772, 1904.

    Google Scholar 

  8. Bell Labs, http://www.belllabs.com.

    Google Scholar 

  9. L. de Forest, “The Audion - Detector and Amplifier”, Proceedings IRE, vol. 2, pp. 15–36, March 1914.

    Google Scholar 

  10. J. Bardeen and W. H. Brattain, “The Transistor, a Semiconductor Triode”, Physical Review Letters, 74:230, 1949.

    Google Scholar 

  11. J. Bardeen and W. H. Brattain, “Conductivity of Germanium”, Physical Review Letters, 75:1216, 1949.

    Google Scholar 

  12. W. Shockley, “The Theory of P-N Junctions in Semiconductors and P-N Junction Transistors”, Bell System Technology Journal, 29:435, 1949.

    Google Scholar 

  13. W. Shockley, “A Unipolar Field-Effect Transistor”, Proceedings IRE, vol. 40, pp. 1365–1376, November, 1952.

    Article  Google Scholar 

  14. U.S. patent number 3138743.

    Google Scholar 

  15. U.S. patent number 2981887.

    Google Scholar 

  16. ITRS roadmap, 2003 edition, “Radio Frequency and Analog/Mixed Signal Technologies for Wireless Communications” (a section of the Process Integration Chapter), http://www.itrs.com.

    Google Scholar 

  17. GSM World, http://www.gsmworld.com/news/press_2005/ press 05_21.shtml.

    Google Scholar 

  18. N. Mawston, Global Handset Sales Forecasts 2004– 2009, March 2004, http ://www. strategyanalytics. com.

    Google Scholar 

  19. 3GPP, http://www.3gpp.org.

    Google Scholar 

  20. A. Abidi, G. J. Pottie and W. J. Kaiser, “Power-Conscious Design of Wireless Circuits and Systems”, Proceedings IEEE, vol. 88, no. 10, pp. 1528–1545, October 2000.

    Google Scholar 

  21. M. Pedram and J. Rabaey, Power A ware Design Methodologies, Kluwer Academic Publishers, 2002.

    Google Scholar 

  22. L. Holguin et al., “Battery Technology for Mobile Computers”, March 2002, http://www.dongkang.com.cn/BasicKnowledge/whitepaper/BatteryTechnologyWhitePaper.pdf

    Google Scholar 

  23. R. L. Lagendijk, Ubiquitous Communications Research Program, Final Program Report, http://www.ubicom.tudelft.nl, January 2002.

    Google Scholar 

  24. Electronics Industry Market Research and Knowledge Network, Market Research Report Number DB375, July 2003, http://www.electronics.ca/reports/ic/rf_ics.html#toc.

    Google Scholar 

  25. A. Tasić, S-T. Lim, W. A. Serdijn and J. R. Long, “Design of Adaptive Multi-Mode RF Front-End Circuits”, IEEE Journal of Solid-State Circuits, 2006.

    Google Scholar 

  26. T. Keller and L. Hanzo, “Adaptive Multicarrier Modulation: a Convenient Framework for Time-Frequency Processing in Wireless Communications”, Proceedings IEEE, vol. 88, no. 5, pp. 611–640, May 2000.

    Article  Google Scholar 

  27. W. Pasman, “Low-Latency Rendering for Mobile Augmented Reality”, Computers and Graphics, vol. 23., no. 6, pp. 875–881, 1999.

    Article  Google Scholar 

  28. A. van der Schaaf, K. Langendoen and R. L. Lagendijk., “Design of an Adaptive Interface between Video Compression and Transmission Protocols for Mobile Communications”, Proceedings of PV-2001, pp. 395–404, April 2001.

    Google Scholar 

  29. J. Pouwelse, K. Langendoen and and H. Sips, “Dynamic Voltage Scaling on a Low-Power Microprocessor”, Proceedings Mobicom, pp. 251–259, July 2001.

    Google Scholar 

  30. J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen, K. Halonen, “A Dual-Band RF Front-End for WCDMA and GSM Applications”, Proceedings CICC, pp. 175–178, May 2000.

    Google Scholar 

  31. H. Hashemi and A. Hajimiri, “Concurrent Dual-Band LNAs and Receiver Architectures”, Proceedings VLSI, pp. 247–250, June 2001.

    Google Scholar 

  32. A. Tasić, W. A. Serdijn and J. R. Long, “Design of Multi-Standard Adaptive Voltage Controlled Oscillators”, IEEE Transactions on Microwave Theory and Technique, vol. 53, no. 2, February 2005.

    Google Scholar 

  33. X. Li and M. Ismail, “Architectures and Specs Help Analysis of Multi Standard Receivers”, http://www.planetanalog.com/story/OEG200303 12S0038.

    Google Scholar 

  34. B. Xia et al., “An RC Time Constant Auto-Tuning Structure for High Linearity Continuous-Time Sigma-Delta Modulators and Active Filters”, IEEE Transactions on Circuits and Systems - I, vol. 51, no. 11, pp. 2179–2188, November 2004.

    Article  Google Scholar 

  35. D. Chamala et al., “A Gm-C Low-Pass Filter for Zero-IF Mobile Applications with a Very Wide Tuning Range”, IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1443–1450, July 2005.

    Article  Google Scholar 

  36. M. R. Miller and C. S. Petrie, “A Multibit Sigma-Delta ADC for Multimode Receivers”, IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 475–482, March 2003.

    Article  Google Scholar 

  37. S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters—Theory, Design, and Simulation, Piscataway, NJ, IEEE Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Tasić, A., Serdijn, W.A., Long, J.R. (2006). INTRODUCTION. In: Adaptive Low-Power Circuits for Wireless Communications. Analog Circuits and Signal Processing Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5250-2_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5250-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5249-1

  • Online ISBN: 978-1-4020-5250-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics