Skip to main content

Effect of Salicylic Acid on Solute Transport in Plants

  • Chapter

Abstract

The SA action on the membrane transport is its least studied physiological property. The changes in compound fluxes between the cell and the environment are, however, one of the early responses to SA treatment. Even low concentrations of SA retard potassium influx and increase that of calcium and alters proton influxes. These ion transport changes are related to the plasmalemma depolarization resulting from the loss of membrane selectivity and the activity of electrogenic pump. The data arguing for the SA-induced intercellular transport changes are also reviewed. One reason for these changes may be the reduction of plasmodesmata conductance resulting from rapid and short-lived callose deposition around the neck regions, the narrowest point of plasmodesmata. The possibility of SA influencing the callose synthase and the β-1,3-glucanase activities is discussed. The loss of plasmodesmata conductance may influence the messengers transport or the pathogens spread. The isolation of an infected cell, brought about by callose deposition is one of the earliest plant defense reaction followed by the initiation of some other defense mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. M., and Corey, S., 2001. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci., 26: 61-66.

    PubMed  CAS  Google Scholar 

  • Alvarez, M. E., 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol., 44: 429-442.

    PubMed  CAS  Google Scholar 

  • Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A., and Lamb, C., 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92: 773-784.

    PubMed  CAS  Google Scholar 

  • Anderson, M. D., Chen, Z., and Klessig, D. F., 1998. Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochem., 47: 555-566.

    CAS  Google Scholar 

  • Arpagaus, S., Rawyler, A., and Braendle, R., 2002. Occurrence and characteristics of the mitochondrial permeability transition in plants. J. Biol. Chem., 277: 1780-1787.

    PubMed  CAS  Google Scholar 

  • Assaad, F. F., 2001. Of weeds and men: what genomes teach us about plant cell biology. Curr. Opin. Plant Biol., 4: 478-487.

    PubMed  CAS  Google Scholar 

  • Atkinson, M. M., Huang, J., and Knopp, J. A., 1985. The hypersensitive reaction of tobacco to Pseudomonas syringae pv. pisi activation of a plasmalemma K+/H+ exchange mechanism. Plant Physiol., 79: 843-847.

    PubMed  CAS  Google Scholar 

  • Atkinson, M. A., Keppler, L. D., Orlandi, E. W., Baker, C. J., and Mischke, C. F., 1990. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol., 92: 215-221.

    PubMed  CAS  Google Scholar 

  • Bach, M., Schnitzler, J.-P., and Seitz, H. U., 1993. Elicitor-induced changes in Ca 2+ influx, K+efflux, and 4-hydroxybenzoic acid synthesis in protoplasts of Daucus carota L. Plant Physiol., 103: 407-412.

    PubMed  CAS  Google Scholar 

  • Badelt, K., White, R. G., Overall, R. L., and Vesk, M., 1994. Ultrastructural specializations of the cell wall sleeve around plasmodesmata. Am. J. Bot., 81: 1422-1427.

    Google Scholar 

  • Bailey, B. A., Dean, J. F. D., and Anderson, J. D., 1990. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol., 94: 1849-1854.

    PubMed  CAS  Google Scholar 

  • Baker, C. J., Atkinson, M. M., and Collmer, A., 1987. Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in tobacco. Phytopath., 77: 1268-1272.

    CAS  Google Scholar 

  • Balasubramanian, S. V., Straubinger, R. M., and Morris, M. E., 1997. Salicylic acid induces changes in the physical properties of model and native kidney membranes. J. Pharm. Sci., 86: 199-204.

    PubMed  CAS  Google Scholar 

  • Balk, J., Leaver.C. J., and McCabe, P. F., 1999. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett., 463: 151-154.

    PubMed  CAS  Google Scholar 

  • Baluška F., Šamaj, J., Napier, R., and Volkmann, D., 1999. Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J. 19: 481-488.

    PubMed  Google Scholar 

  • Baluška, F., Cvrckova, F., Kendrick-Jones, J., and Volkmann, D., 2001. Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol., 126: 39-46.

    PubMed  Google Scholar 

  • Baluška F., Hlavacka, A., Volkmann, D., and Menzel, D., 2004. Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol., 14: 404-408.

    PubMed  Google Scholar 

  • Basta, D., and Ernst, A., 2004. Effects of salicylate on spontaneous activity in inferior colliculus brain slices. Neurosci. Res., 50: 237-243.

    PubMed  CAS  Google Scholar 

  • Beffa, R. S., Hofer, R.-M., Thomas, M., and Meins, F., Jr., 1996. Decreased susceptibility to viral disease of β-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell, 8: 1001-1011.

    PubMed  CAS  Google Scholar 

  • Bhuja, P., McLachlan, K., Stephens, J., and Taylor, G., 2004. Accumulation of β-1,3-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. Plant Cell Physiol. 45: 543-549.

    CAS  Google Scholar 

  • Blackman, L. M., and Overall, R. L., 1998. Immunolocalization of the cytoskeleton to plasmodesmata of Chara coralline. Plant J., 14: 733-741.

    CAS  Google Scholar 

  • Blackman, L. M., Harper, J. D. I., and Overall, R. L., 1999. Localization of a centrin-like protein to higher plant plasmodesmata. Eur. J. Cell Biol., 78: 297-304.

    PubMed  CAS  Google Scholar 

  • Blatt, M. R., and Grabov, A., 1997. Signaling gates in abscisic acid-mediated control of guard cell ion channels. Plant Physiol., 100: 481-490.

    CAS  Google Scholar 

  • Botha, C. E. J., and Cross, R. H. M., 2000. Toward reconciliation of structure with function in plasmodesmata: who is the gatekeeper. Micron., 31: 713-721.

    PubMed  CAS  Google Scholar 

  • Bowler, C., and Fluhr, R., 2000. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci., 5: 241-246.

    PubMed  CAS  Google Scholar 

  • Bucher, G. L., Tarina, C., Heinlein, M., Serio, F. D., Meins. F., Jr., and Iglesias, V. A., 2001. Local expression of enzymatically active class I β-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J., 28: 361-369.

    PubMed  CAS  Google Scholar 

  • Cai, J., and Jones, D.P., 1998. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem., 273: 11401-11404.

    PubMed  CAS  Google Scholar 

  • Castagne, V., Barneoud, P., and Clarke, P. G., 1999. Protection of axotomized ganglion cells by salicylic acid. Brain Res., 840: 162-166.

    PubMed  CAS  Google Scholar 

  • Cessna, S. G., and Low, P.S., 2001. Activation of the oxidative burst in aequorin-transformed Nicotiana tabacum cells is mediated by protein kinase- and anion channel-dependent release of Ca2+ from internal stores. Planta, 214: 126-134.

    PubMed  CAS  Google Scholar 

  • Chen, H.-J., Hou, W.-C., Kuc, J., and Lin, Y.-H., 2002. Salicylic acid mediates alternative signal transduction pathways for pathogenesis-related acidic β-1,3-glucanase (protein N) induction in tobacco cell suspension culture. J. Plant Physiol., 159: 331-337.

    CAS  Google Scholar 

  • Chen, Z., Silva, H., and Klessig, D. F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 263: 1883-1886.

    Google Scholar 

  • Chivasa, S., and Carr, J., 1998. Cyanide restores N-gene mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell, 10: 1489-1498.

    CAS  Google Scholar 

  • Chivasa, S., Murphy, A. M., Naylor, M., and Carr, J. P., 1997. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell, 9: 547-557.

    PubMed  CAS  Google Scholar 

  • Chui, C. H., Lau, F. Y., Chan, A. S., Cheng, G. Y., Wong, R. S., Lai, K. B., Kok, S. H., Yeung, T. T., Teo, I. T., Yau, M. Y., Cheung, F., Cheng, C. H., and Tang, J. C., 2005. Gleditsia sinensis fruit extract-induced apoptosis involves changes of reactive oxygen species level, mitochondrial membrane depolarization and caspase 3 activation. Int. J. Mol. Med., 15: 539-543.

    PubMed  Google Scholar 

  • Citovsky, V., McLean, B. G., Zupan, J. R., and Zambryski, P., 1993. Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Gene Dev., 7: 904-910.

    PubMed  CAS  Google Scholar 

  • Clarke, S. E., 1996. Plant cell communication: the world outside the plasma membrane. Trends Plant Sci., 1: 406-407.

    Google Scholar 

  • Clayton, H., Knight, M. R., Knight, H., McAinsh, M. R., and Hetherington, A. M., 1999. Dissection of the ozone-induced calcium signature. Plant J., 17: 575-579.

    PubMed  CAS  Google Scholar 

  • Clough, S. J., Fengler, K. A., Yu, I. C., Lippok, B., Smith, R. K., Jr., and Bent, A. F., 2000. The Arabidopsis dnd1 “defense no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA., 97: 9323-9328.

    PubMed  CAS  Google Scholar 

  • Conrath, U., Chen, Z., Ricigliano, J. R., and Klessig, D. F., 1995. Two inducers of plant defense responses, 2, 6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA., 92: 7143-7147.

    PubMed  CAS  Google Scholar 

  • Conrath, U., Jeblick, W., and Kauss, H., 1991. The protein inhibitor, K-252a, decreases elicitor induced Ca2+ uptake and K+ release, and increases coumarin synthesis in parsley cells. FEBS Lett., 279: 141-144.

    PubMed  CAS  Google Scholar 

  • Cook, A. A., and Stall, R. E., 1968. Effect of Xanthomonas vesicatoria on loss of electrolytes from leaves Capsicumannuum. Phytopath., 58: 617-619.

    Google Scholar 

  • Currier, H., and Webster, D. H., 1964. Callose formation and subsequent disappearance: studies in ultrasound stimulation. Plant Physiol., 39: 843-847.

    PubMed  CAS  Google Scholar 

  • Dat, J. F., Lopez-Dalgado, H., Foyer, C. H., and Scott, I. M., 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol., 116: 1351-1357.

    CAS  Google Scholar 

  • DebRoy, S., Thilmony, R., Kwack, Y.-B., Nomura, K., and He, S. Y., 2004. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl. Acad. Sci. USA., 101: 9927-9932.

    PubMed  CAS  Google Scholar 

  • Del Pozo, O., and Lam, E., 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol., 8: 1129-1132.

    PubMed  CAS  Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negroto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J., 1994. A central role of salicylic acid in plant disease resistance. Science., 266: 1247-1250.

    CAS  Google Scholar 

  • Delmer, D. P., Volokita, M., Solomon, M., Fritz, U., Delphendahl, W., and Herth, W., 1993. A monoclonal antibody recognizes a 65 kDa higher plant membrane polypeptide which undergoes cation-dependent association with callose deposition in vivo. Protoplasma, 176: 33-42.

    CAS  Google Scholar 

  • Demidchik, V., Shabala, S. N., Coutts, K. B., Tester, M. A., and Davies, J. M., 2003. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J. Cell Sci., 116: 81-88.

    PubMed  CAS  Google Scholar 

  • Desagher, S., and Martinou, J.-C., 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol., 10: 369-377.

    PubMed  CAS  Google Scholar 

  • Ding, B., Kwon, M. O., and Warnberg, L., 1996. Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J., 10: 157-164.

    Google Scholar 

  • Doares, S.H., Narváez-Vásquez, J., Conoconi, A., and Ryan, C.A., 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol., 108: 1741-1746.

    PubMed  CAS  Google Scholar 

  • Doherty, H. M., and Bowles, D. J., 1990. The role of pH and ion transport in oligosaccharide-induced proteinase inhibitor accumulation in tomato plants. Plant Cell Environ., 13: 851-855.

    CAS  Google Scholar 

  • Donofrio, N. M., and Delaney, T. P., 2001. Abnormal callose response phenotype and hypersusceptibility to Peronospora parasitica in defence-compromised arabidopsis nim1-1 and salicylate hydroxylase-expressing plants. Mol. Plant-microbe Interact., 14: 439-450.

    PubMed  CAS  Google Scholar 

  • Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Droge, W., and Schmitz, M. L., 1999. Hydrogen peroxide-induced apoptosis is CD 95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene, 18: 747-757.

    PubMed  CAS  Google Scholar 

  • Durner, J., and Klessig, D. F., 1996. Salicylic acid is a modulator of tobacco and mammalian catalases. J. Biol. Chem., 271: 28492-28501.

    PubMed  CAS  Google Scholar 

  • Ehlers, K., and Kollmann, R., 2001. Primary and secondary plasmodesmata: structure, origin and functioning. Protoplasma, 216: 1-30.

    PubMed  CAS  Google Scholar 

  • Engelberth, J., Koch, T., Schüler, G., Bachmann, N., Rechtenbach, Y., and Boland, W., 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol., 125: 369-377.

    Google Scholar 

  • Enkerli, K., Hahn, M. G., and Mims, C. W., 1997. Immunogold localization of callose and other plant cell wall components in soybean roots infected with oomycete Phytophthora sojae. Can. J. Bot., 75: 1509-1517.

    CAS  Google Scholar 

  • Enyedi, A. J., Yalpani, N., Silverman, P., and Raskin, I., 1992. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc. Natl. Acad. Sci. USA., 89: 2480-2484.

    PubMed  CAS  Google Scholar 

  • Eschrich, W., 1965. Physiologie der Siebröhrencallose. Planta, 65: 280-300.

    Google Scholar 

  • Felix, G., and Boller, T., 1995. Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J., 7: 381-389.

    CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J., and Dolan, L., 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422: 442-446.

    PubMed  CAS  Google Scholar 

  • Forte, M., and Bernardi, P., 2005. Genetic dissection of the permeability transition pore. J. Bioenerg. Biomembr., 37: 121-128.

    PubMed  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J., 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261: 754-756.

    CAS  Google Scholar 

  • Garcia-Sancho, J., and Sanchez, A., 1978. Use of salicylic acid to measure the apparent intracellular pH in the Ehrlich ascites-tumor cell and Escherichia coli. Biochem. Biophys. Acta, 509: 148-158.

    PubMed  CAS  Google Scholar 

  • Gilliland, A., Singh, D. P., Hayward, J. M., Moore, C. A., Murphy, A. M., York, C. J., Slator, J., and Carr, J. P., 2003. Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to tobacco mosaic virus. Plant Physiol., 132: 1518-1528.

    PubMed  CAS  Google Scholar 

  • Glass, A. D. M., 1973. Influence of phenolic acids on ion uptake. I Inhibition of phosphate uptake. Plant Physiol., 51: 1037-1041.

    Google Scholar 

  • Glass, A. D. M., 1974a. Influence of phenolic acids upon ion uptake. III Inhibition of potassium absorption. J. Exp. Bot., 25: 1104-1113.

    CAS  Google Scholar 

  • Glass, A. D. M., 1974b. Influence of phenolic acids on ion uptake. IV Depolarization of membrane potentials. Plant Physiol., 54: 855-858.

    CAS  Google Scholar 

  • Glass, A. D. M., 1975. Inhibition of phosphate uptake in barley roots by hydroxybenzoic acids. Phytochem., 14: 2127-2130.

    CAS  Google Scholar 

  • Goodman, R. N., 1968. The hypersensitive reaction in tobacco: a reflection of changes in host cell permeability. Phytopath., 58: 872-875.

    Google Scholar 

  • Goodman, R. N., and Plurad, S.B., 1971. Ultrastructural changes in tobacco undergoing the hypersensitive reaction caused by plant pathogenic bacteria. Physiol. Plant Pathol., 1: 11-16.

    Google Scholar 

  • Gordon, L. Kh, Minibayeva, F. V., Ogorodnikova, T. I., Rachmatullina, D. F., Tzentzevitzky, A. N., Koselnikov, O. P., Maksyutin, D. A., and Valitova, J. N., 2002. Salicylic acid induces dissipation of the proton gradient on the plant cell plasma membrane. Dokl. Biol. Sci., 387: 581-583 (in Russian).

    PubMed  CAS  Google Scholar 

  • Green, D. R., and Reed, J. C., 1998. Mitochondria and apoptosis. Science, 281: 1309-1312.

    PubMed  CAS  Google Scholar 

  • Guern, J., Mathieu Y., Thomine, S., Jouanneau, J. P., and Beloeil, J. C., 1992. Plant cells counteract cytoplasmic pH changes but likely use these pH changes as secondary messages in signal perception. Curr Top Plant Biochem. Physiol., 11: 249-269.

    CAS  Google Scholar 

  • Hahlbrock, K., and Scheel, D., 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40: 347-369.

    CAS  Google Scholar 

  • Hahlbrock, K., Scheel, D., Logeman, E., Nürnberger, T., Parniske, M., and Reinhold, S., 1995. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl. Acad. Sci. USA., 92: 4150-4157.

    PubMed  CAS  Google Scholar 

  • Harper, J. R., and Balke, N. E., 1981. Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol., 68: 1349-1353.

    PubMed  CAS  Google Scholar 

  • He, D. Y., Yazaki, Y., Nishizawa, Y., Takai, R., Yamada, K., Sakano, K., Shibuya, N., and Minami, E., 1998. Gene activation by cytoplasmic acidification in suspension-cultured rice cell in response to the potent elicitor, N-acetylchitoheptaose. Mol. Plant-Microbe Jnteract., 11: 1167-1174.

    CAS  Google Scholar 

  • Hedrich, R., and Schroeder, J. I., 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40: 539-569.

    Google Scholar 

  • Hennig, J., Malamy, J., Grynkiewicz, G., Indulski, J., and Klessig, D. F., 1993. Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant. J., 4: 593-600.

    PubMed  CAS  Google Scholar 

  • Hofius, D., Hajirezaei, M. R., Geiger, M., Tschiersch, H., Melzer, M., and Sonnewald, U., 2004. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol., 135: 1256-1268.

    PubMed  CAS  Google Scholar 

  • Holdaway-Clarke, T. L., Walker, N. A., Hepler, P. K., and Overall, R. L., 2000. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta, 210: 329-335.

    PubMed  CAS  Google Scholar 

  • Horn, M. A., Meadows, R. P., Apostol, I., Jones, C. R., Gorenstein, D.G., Heinstein, P. F., and Low, P.S., 1992. Effect of elicitation and changes in extracellular pH on the cytoplasmic and vacuolar pH of suspension-cultured soybean cells. Plant Physiol., 98: 680-686.

    PubMed  CAS  Google Scholar 

  • Iglesias, V. A., and Meins, F., Jr., 2000. Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J., 21: 157-166.

    PubMed  CAS  Google Scholar 

  • Jabs, T., 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol., 57: 231-245.

    PubMed  CAS  Google Scholar 

  • Jabs, T., Tschöpe, M., Colling, C., Hahlbrock, K., and Scheel, D., 1997. Elicitor-stimulated ion fluxes and O2-from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley cells. Proc. Natl. Acad. Sci. USA., 92: 4150-4157.

    Google Scholar 

  • Jacobs, A. K., Lipka, V., Burton, R. A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., and Fincher, G. B., 2003. An Arabidopsis callose synthase, GSL 5, is required for wound and papillary callose formation. Plant Cell, 15: 2503-2513.

    PubMed  CAS  Google Scholar 

  • Jay, D., Jay, E. G., and Medina, M. A., 1999. Superoxide dismutase activity of the salicylate-iron complex. Arch. Med Res., 30: 93-96.

    PubMed  CAS  Google Scholar 

  • Jones, A., 2000. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci., 5: 225-230.

    PubMed  CAS  Google Scholar 

  • Kang, M. K., Park, K. S., and Choi, D., 1998. Coordinated expression of defense-related genes by TMV infection or salicylic acid treatment in tobacco. Mol. Cells, 31: 388-392.

    Google Scholar 

  • Kartusch, R., 2003. On the mechanism of callose synthesis induction by metal ions in onion epidermal cells. Protoplasma, 220: 219-225.

    PubMed  CAS  Google Scholar 

  • Katz, V. A., Thulke, O. U., and Conrath, U., 1998. A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol., 117: 1333-1339.

    CAS  Google Scholar 

  • Katz, V., Fuchs, A., and Conrath, U., 2002. Pretreatment with salicylic acid primes parsley cells for enhanced ion transport following elicitation. FEBS Lett., 520: 53-57.

    PubMed  CAS  Google Scholar 

  • Kauffmann, S., Legrand, M., Geoffroy, P., and Fritig, B., 1987. Biological function of “pathogenesis-related” proteins: four PR proteins of tobacco have β-1,3-glucanase activity. EMBO J., 6: 3209-3212.

    PubMed  CAS  Google Scholar 

  • Kauss, H., 1985. Callose biosynthesis as a Ca2+-regulated process and possible relations to the induction of other metabolic changes. J. Cell Sci., Suppl. 2: 89-103.

    CAS  Google Scholar 

  • Kauss, H., 1987. Callose-Synthese: Regulation durch Induzierten Ca2+-Einstrom in Pflanzenzellen. Naturwissenschaften., 74: 275-281.

    CAS  Google Scholar 

  • Kauss, H., and Jeblick, W., 1985. Activation by polyamines, polycations, and rutenium red of the Ca2+ -dependent glucan synthase from soybean cells. FEBS Lett., 185: 226-230.

    CAS  Google Scholar 

  • Kauss, H., and Jeblick, W., 1986. Influence of free fatty acids, lysophosphatidylcholine, platelet-activating factor, acylcarnitine, and echinocandin B on 1,3-β-D-glucan synthase and callose synthesis. Plant Physiol., 80: 7-13.

    PubMed  CAS  Google Scholar 

  • Kauss, H., and Jeblick, W., 1986. Synergistic activation of 1,3-β-D-glucan synthase by Ca2+ and polyamines. Plant Sci. Lett., 43: 103-107.

    CAS  Google Scholar 

  • Kauss, H., and Jeblick, W., 1995. Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol., 108: 1171-1178.

    PubMed  CAS  Google Scholar 

  • Kauss, H., Theisinger-Hinkel, E., Mindermann, R., and Conrath, U., 1992. Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J., 2: 655-660.

    CAS  Google Scholar 

  • Kawano, T., and Muto, S, 2000. Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot., 51: 685-693.

    PubMed  CAS  Google Scholar 

  • Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., and Muto, S., 1998. Salicylic acid induces extracellular generation of superoxide followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol., 39: 721-730.

    CAS  Google Scholar 

  • Keppler, L.D., and Baker, C.J., 1989. O2 .--initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions. Phytopath., 79: 555-562.

    CAS  Google Scholar 

  • Keppler, L.D., and Novacky, A., 1986. Involvement of membrane lipid peroxidation in the development of a bacterially induced hypersensitive reaction. Phytopath., 76: 104-107.

    CAS  Google Scholar 

  • Kim, J-S., He, L., and Lemasters, J. J., 2003. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun., 304: 463-470.

    PubMed  CAS  Google Scholar 

  • Klessig, D. F., and Malamy, J., 1994. The salicylic acid signal in plants. Plant Mol. Biol., 26: 1439-1458.

    PubMed  CAS  Google Scholar 

  • Kneusel, R. E., Matern, U., and Nicolay, K., 1989. Formation of trans-caffeoyl-CoA from trans-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Arch. Biochem. Biophys., 269: 455-462.

    PubMed  CAS  Google Scholar 

  • Kobayashi, I., and Hakuno, H., 2003. Actin-related defense mechanism to reject penetration attempt by a non-pathogen is maintained in tobacco BY-2 cells. Planta, 217: 340-345.

    PubMed  CAS  Google Scholar 

  • Köhle, H., Jeblick, W., Poten, F., Blaschek, W., and Kauss, H., 1985. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol., 77: 544-551.

    PubMed  Google Scholar 

  • Korthout, H. A. A. J., Berecki, G., Bruin, W., van Duijn, B., and Wang, M., 2000. The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett., 475: 139-144.

    PubMed  CAS  Google Scholar 

  • Koumura T., Nakamura, C., and Nakagawa, T., 2005. Involvement of hydroperoxide in mitochondria in the induction of apoptosis by the eicosapentaenoic acid. Free Radic. Res., 39: 225-235.

    PubMed  CAS  Google Scholar 

  • Krasavina, M. S., Kulikova, A. L., Ktitorova, I. N., and Burmistrova, N. A., 1998. A possible role of actin in regulating conductance of plasmodesmata. Proc. Biol. Sci., 362: 464-466.

    Google Scholar 

  • Krasavina, M. S., Ktitorova, I. N., and Burmistrova, N. A., 2001. Electrical conductance of cell-to-cell junctions and cytoskeleton of plant cells. Russian J. Plant Physiol., 48: 741-748.

    CAS  Google Scholar 

  • Krasavina, M. S., Malyshenko, S. I., Raldugina, G. N., Burmistrova, N. A., Nosov, A. V., 2002. Can salicylic acid affect the intercellular transport of the tobacco mosaic virus by changing plasmodesmal permeability? Russian J. Plant Physiol., 49: 61-67.

    CAS  Google Scholar 

  • Ktitorova, I. N., Skobeleva, O. V., Kanash, E. V., Bilova, T. E., and Sharova, E. P., 2006. The reasons of root growth decrease after UV-B irradiation of barley seedlings. Russian J. Plant Physiol. (in press).

    Google Scholar 

  • Kuchitsu, K., Yazaki, Y., Sakano, K., and Shibuya, N., 1997. Transient cytoplasmic pH changes and ion fluxes through the plasma membrane in suspension-cultured rice cells triggered by N-acetylchitooligosaccharide elicitor. Plant Cell Physiol., 38: 1012-1018.

    CAS  Google Scholar 

  • Kurkdjian A., and Guern, J., 1989. Intracellular pH: measurement and importance in cell activity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40: 271-303.

    CAS  Google Scholar 

  • Kurosaki, F., Tsurusawa, Y., and Nishi, A., 1987. The elicitation of phytoalexins by Ca2+ and cyclic AMP in carrot cells. Phytochem., 26: 1919-1923.

    CAS  Google Scholar 

  • Lacomme, C., and Santa Cruz, S., 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA., 96: 7956-7961.

    PubMed  CAS  Google Scholar 

  • Lapikova, V. P., Gaivoronskaya, L. M., and Aver’yanov, A. A., 2000. Possible involvement of oxygen species in the double induction of plant defense responses. Russian J. Plant Physiol., 47: 145-147.

    CAS  Google Scholar 

  • Lapous, D., Mathieu, Y., Guern, J., and Laurière, C., 1998. Increase of defense gene transcripts by cytoplasmic acidification in tobacco cell suspensions. Planta, 205: 452-458.

    CAS  Google Scholar 

  • Lebrun-Garcia, A., Chiltz, A., Gout ,E., Bligny, R., and Pugin, A., 2002. Questioning the role of salicylic acid and cytosolic acidification in mitogen-activated protein kinase activation induced by cryptogein in tobacco cells. Planta, 214: 792-797.

    PubMed  CAS  Google Scholar 

  • Lee, S. H., Singh, A. P., and Chung G. C., 2004. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J. Exp. Bot., 55: 1733-1741.

    PubMed  CAS  Google Scholar 

  • Leisner, S. M., and Turgeon, R., 1993. Movement of virus and photoassimilate in the phloem: a comparative analysis. Bioessays 15: 741-748.

    PubMed  CAS  Google Scholar 

  • León, J., Lawton, M. A., and Raskin, I., 1995. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol., 108: 1673-1678.

    PubMed  Google Scholar 

  • Leubner-Metzger, G., and Meins, F., Jr., 1999. Function and regulation of plant β-1,3-glucanases (PR-2). In: Datta S. K., Muthukrishnan S., eds., Pathogenesis related proteins in plants. USA: CRC Press, 49-76.

    Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. A., and Lamb, C., 1994. H2O2 from oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583-593.

    PubMed  CAS  Google Scholar 

  • Levitan, H., and Barker, J.L., 1972. Salicylate: a structure-activity study of its effects on membrane permeability. Science, 176: 1423-1425.

    PubMed  CAS  Google Scholar 

  • Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X., and Williams, R. S., 2000. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell, 101: 389-399.

    PubMed  CAS  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E.S., and Wang, X., 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91: 479-489.

    PubMed  CAS  Google Scholar 

  • Li, Y.-F., Zhu, R., and Xu, P., 2005. Activation of the gene promoter of barley β-1,3-glucanase isoenzyme G III is salicylic acid (SA)-dependent in transgenic rice plants. J. Plant Res., 118: 215-221.

    PubMed  CAS  Google Scholar 

  • Li, Y.-Z., Zhen, X.-H., Tang, H.-L., Zhu, J.-W., and Yang, J.-M., 2003. Increase of β-1,3-glucanase and chitinase activities in cotton callus cells treated by salicylic acid and toxin of Verticillium dahliae. Acta Bot. Sin., 45: 802-808.

    CAS  Google Scholar 

  • Lin, C., Yu, Y., Kadono, T., Iwata, M., Umemura, K., Furuichi, T., Kuse, M., Isobe, M., Yamamoto, Y., Matsumoto, H., Yoshizuka, K., and Kawano, T., 2005. Action of aluminum, novel TPC1-type channel inhibitor, against salicylate-induced and cold-shock- induced calcium influx in tobacco BY-2 cells. Biochem. Biophys. Res. Commun., 332: 823-830.

    PubMed  CAS  Google Scholar 

  • Linthorst, H. J. M., 1991. Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci., 10: 123-150.

    CAS  Google Scholar 

  • Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996. Induction of apoptotic program in cell-free extracts: requirement for ATP and cytochrome c. Cell, 86: 147-157.

    CAS  Google Scholar 

  • Liu, Y., and Li, X., 2004. Effects of salicylate on transient outward and delayed rectifier potassium channels in rat inferior colliculus neurons. Neurosci. Lett., 369: 115-120.

    PubMed  CAS  Google Scholar 

  • Lozovaya, V. V., Waranyuwat, A., and Widholmj, M., 1998. β-1,3-glucanase and resistance to Aspergillus flavus infection in maize. Crop Sci., 38: 1255-1260.

    CAS  Google Scholar 

  • Lucas, W. J., and Lee, J.-Y., 2004. Plasmodesmata as a supracellular control network in plants. Nat. Rev. Mol. Cell Biol., 5: 712-726.

    PubMed  CAS  Google Scholar 

  • Lurin, C., Geelen, D., Barbier-Brygoo, H., Guern, J., and Maurel, C., 1996. Cloning and functional expression of a plant voltage-dependent chloride channel. Plant Cell, 8: 701-711.

    PubMed  CAS  Google Scholar 

  • Lyalin, O.O., Akhmedov, I.S., Mamedov, T.A., Borovkov, A.V., Akhmedov, N.I., and Aliev D.A., 1980. Effect of some phytotoxins on membrane potential and electrical resistance of root hair plasma membranes in Trianea bogotensis Karst. Fiziologia Rastenij., 27: 1237-1241 (in Russian).

    CAS  Google Scholar 

  • Lyalin, O.O., Ktitorova, I.N., Barmicheva, E.M., and Akhmedov, N.I., 1986. Intercellular connections in submersed trichomes of Salvinia. Fiziologia Rastenij., 33: 432-446 (in Russian).

    Google Scholar 

  • Macri, F., Vianello, A., and Pennazio, S., 1986. Salicylate-collapsed membrane potential in pea stem mitochondria. Physiol. Plant., 67: 136-140.

    CAS  Google Scholar 

  • MacRobbie, E. A. C., 1999. Signal transduction and ion channels in guard cells. Phil. Trans. Roy. Soc. Lond. B., 353: 1475-1488.

    Google Scholar 

  • Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I., 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250: 1002-1004.

    CAS  Google Scholar 

  • Mamulashvily, G. G., Krasavina, M. S., and Lyalin, O. O., 1973, Role of different stem tissues in transduction of action potential. Fiziol. Rast., 20: 442-450 (in Russian).

    Google Scholar 

  • Marre, M. T., Romani, G., and Marre, E., 1983. Transmembrane hyperpolarization and increase of K+ uptake in maize roots treated with permeant weak acids. Plant Cell Environ., 6: 617-623.

    CAS  Google Scholar 

  • Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., Bentner, G., Brdiczka, D., Rémy, R., Xie Z.-H., Reed, J. C., and Kroemer, G., 1998. Permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med., 187: 1261-1271.

    PubMed  CAS  Google Scholar 

  • Mathieu, Y., Lapous, D., Thomine, S., Laurière, C., and Guern, J., 1996. Cytoplasmic acidification as an early phosphorylation-dependent response of tobacco cells to elicitors. Planta, 199: 416-424.

    CAS  Google Scholar 

  • Matsushita, Y., Hanazawa, K., Yoshioka, K., Oguchi, T., Kawakami, S., Watanabe, Y., Nishiguchi, M., and Nyunoya, H., 2000. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. J. Gen. Virol., 81: 2095-2102.

    PubMed  CAS  Google Scholar 

  • Matsushita, Y., Yoshioka, K., Shigyo, T., Takahashi, H., and Nyunoya, H., 2002. Phosphorylation of the movement protein of Cucumber mosaic virus in transgenic tobacco plants. Virus Genes, 24: 231-234.

    PubMed  CAS  Google Scholar 

  • Mauch, F., Mauch-Mani, B., and Boller, T., 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol., 88: 936-942.

    PubMed  CAS  Google Scholar 

  • Maxwell, D. P., Nickels, R., and McIntosh, L., 2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J., 29: 269-279.

    PubMed  CAS  Google Scholar 

  • Mayers, C. N., Lee, K. C., Moore, C. A., Wong, C. A., and Carr, J. P., 2005. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol. Plant Microbe Interact., 18: 428-434.

    PubMed  CAS  Google Scholar 

  • McNairn, R. B., 1972. Phloem translocation and heat-induced callose formation in field grown Gossypium hirsutumL. Plant Physiol., 50: 366-370.

    Google Scholar 

  • Messiaen, Y., and van Cutsem, 1994. Pectic signal transduction in carrot cells: membrane, cytosolic and nuclear responses induced by oligogalacturonides. Plant Cell Physiol., 35: 677-689.

    CAS  Google Scholar 

  • Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B., 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250: 1004-1006.

    Google Scholar 

  • Michelet, B., and Boutry, M., 1995. The plasma membrane H+ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiol., 108: 1-6.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Shulaev, V., and Lam, E., 1995. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell, 7: 29-42.

    PubMed  CAS  Google Scholar 

  • Mootha, V. K., Wei, M. C., Buttle, K. F., Scorrano, L., Panoutsakopoulou, V., Mannella, C. A,. and Korsmeyer, S. J., 2001. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J., 20: 661-671.

    PubMed  CAS  Google Scholar 

  • Mori, I. C, Iida, H., Tsuji, F. I., Isobe, M., Uozumi, N., and Muto, S., 1998. Salicylic acid induces a cytosolic Ca2+-elevation in yeast. Biosci. Biotech. Biochem., 62: 986-989.

    CAS  Google Scholar 

  • Moyen, C., and Johannes, E., 1996. Systemic transiently depolarises the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ., 19: 464-470.

    CAS  Google Scholar 

  • Mur, L. A., Bi, Y. M., Darby, R. M., Firek, S., and Draper, J., 1997. Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant J., 12: 1113-1126.

    PubMed  CAS  Google Scholar 

  • Mur, L. A. J., Naylor, G., Warner, S. A. J., Sugars, J. M., White, R. F., and Draper, J., 1996. Salicylic acid potentiates defense gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J., 9: 559-571.

    CAS  Google Scholar 

  • Murata, Y., Pei, Z. M., Mori, I., C., and Schroeder, J. I., 2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in the abi1-1 and abi2-1 protein phosphatase 2c mutants. Plant Cell, 13: 2513-2523.

    PubMed  CAS  Google Scholar 

  • Murphy, A. M., and Carr, J. P., 2002. Salicylic acid has cell-specific effects on Tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol., 128: 552-563.

    PubMed  CAS  Google Scholar 

  • Murphy A. M., Chivasa, S., Singh, D. P., and Carr, J.P., 1999. Salicylic acid-induced resistance to viruses and other pathogens: a parting or the ways? Trends Plant Sci. 4: 155-160.

    Google Scholar 

  • Naylor, M., Murphy, A. M., Berry, J. O., and Carr, J. P., 1998. Salicylic acid can induce resistance to plant virus movement. Mol. Plant-Microbe Interact., 1: 860-868.

    Google Scholar 

  • Neill, S., Desikan, R., and Hancock, J., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol., 5: 388-395.

    PubMed  CAS  Google Scholar 

  • Nishimura, M. T., Stein, M., Hou, B.-H., Vogel, J. P., Edwards, H., and Sommerville, S. C., 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science, 301: 969-972.

    PubMed  CAS  Google Scholar 

  • Norman, C., Howell, K. A., Millar, A. H., Whelan, A. H., and Day, D. A., 2004. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol., 134: 492-501.

    PubMed  CAS  Google Scholar 

  • Northcote, D. H., Davey, R., and Lay, J., 1989. Use of antisera to localize callose, xylan, and arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta, 178: 353-366.

    CAS  Google Scholar 

  • Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D., 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell, 78: 449-460.

    PubMed  Google Scholar 

  • O’Brien, I. E. W., Baguley, B. C., Murray, B. G., Morris, B. A. M., and Ferguson, I. B., 1998. Early stages of the apoptotic pathway in plant cells are reversible. Plant J., 13: 803-814.

    CAS  Google Scholar 

  • Ojalvo, I., Rokem, J. S., Navon,G., and Goldberg, I., 1987. 31P NMR study of elicitor treated Phaseolus vulgaris cell suspension cultures. Plant Physiol., 85: 716-719.

    PubMed  CAS  Google Scholar 

  • Olesen, P., and Robards, A. W., 1990. The neck region of plasmodesmata. In: Robards, A. W., Lucas, W. J., Pitts, J. D., Jongsma, H. J., Soray, D. C., eds., Parallels in cell to cell junctions in plant and animal. Germany: Springer Verlag, 145-170.

    Google Scholar 

  • Oparka, K. J., 2004. Getting the message across: how do plant cells exchange macromolecular complexes. Trends Plant Sci., 9: 33-40.

    PubMed  CAS  Google Scholar 

  • Oparka, K. J., Prior, D. A. M., Santa Crus, S., Padgett, H., and Beachy, R. N., 1997. Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J., 12: 781-789.

    PubMed  CAS  Google Scholar 

  • Opritov, V. A., Pyatygin, S. S., and Vodeneev, V, A., 2002. Direct coupling of action potential generation in cells of higher plant (Cucurbita pepo) with the operation of an electrogenic pump. Russian J. Plant Physiol., 49: 142-147.

    CAS  Google Scholar 

  • Østergaard, L., Petersen, M., Mattsson, O., and Mundy, J., 2002. An Arabidopsis callose synthase. Plant Mol. Biol., 49: 559-566.

    PubMed  Google Scholar 

  • Pavlovkin, J., Novacky, A., and Ulrich-Eberius, C. I., 1986. Membrane potential changes during bacteria induced hypersensitive reaction. Physiol. Plant Pathol., 28: 125-135.

    CAS  Google Scholar 

  • Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G. J., Grill, E., and Schroeder, J. L., 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406: 731-734.

    PubMed  CAS  Google Scholar 

  • Pelissier, B., Thiband, J. B., Grignon, C., and Esquerre-Tugaye, M. T., 1986. Cell surfaces in plant microorganism interactions. VII. Elicitor preparations from two fungal pathogens depolarize plant membranes. Plant Sci., 46: 103-109.

    CAS  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R., Mattsson, O., Jensen, A. B., and Mundy, J., 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103: 1111-1120.

    PubMed  CAS  Google Scholar 

  • Pike, S. M., Zhang, X. C., and Gassmann, W., 2005. Electrophysiolgical characterization of the Arabidopsis avrRpt 2-specific hypersensitive response in the absence of other bacterial signals. Plant Physiol., 138: 1009-1017.

    PubMed  CAS  Google Scholar 

  • Prasad, T. K., Anderson, M. D., Martin, B. A., and Steward, C. R., 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65-74.

    PubMed  CAS  Google Scholar 

  • Price, A. H., Taylor, A., Ripley, S. J., Griffiths, A., Trewavas, A. J., and Knight, M. R., 1994. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell, 6: 1301-1310.

    PubMed  CAS  Google Scholar 

  • Prithiviraj, B., Bais, H. P., Weir, T., Suresh, B., Najarro, E. H., Dayakar, B. V., Schweizer, H. P., and Vivanco, J. M., 2005. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Jnfeet Jmmun., 73: 5319-5328.

    CAS  Google Scholar 

  • Pugin, A., Frachisse, J. M., Tavernier, E., Bligny, R., Gout, E., Douce, R., and Guern, J., 1997. Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and pentose phosphate pathway. Plant Cell, 9: 2077-2091.

    PubMed  CAS  Google Scholar 

  • Radford, J. E., and White, R. G., 1998. Localization of a myosin-like protein to plasmodesmata. Plant J., 14: 743-750.

    PubMed  CAS  Google Scholar 

  • Radford, J. E., Vesk, M., and Overall, R. L., 1998. Callose deposition at plasmodesmata. Protoplasma, 201: 30-37.

    CAS  Google Scholar 

  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., and Watkins, C. B., 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metbolizing enzymes. Plant Physiol., 115: 137-149.

    PubMed  CAS  Google Scholar 

  • Raskin, I., 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439-463.

    Google Scholar 

  • Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N., 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol., 97: 1324-1347.

    Google Scholar 

  • Raz, V., Fluhr, R., 1992. Calcium requirement for ethylene-dependent responses. Plant Cell, 4: 1123-1130.

    PubMed  CAS  Google Scholar 

  • Reichelt, S., Knight, A. E., Hodge, T. P., Baluška, F., Šamaj, J., Volkmann, D., and Kendrick-Jonas, J., 1999. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J., 19: 555-569.

    PubMed  CAS  Google Scholar 

  • Rentel, M. C., and Knight, M. R., 2004. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol., 135: 1471-1479.

    PubMed  CAS  Google Scholar 

  • Rhoads, D. M., and McIntosh, L., 1992. Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell, 4: 1131-1139.

    PubMed  CAS  Google Scholar 

  • Rhoads, D. M., and McIntosh, L., 1993. Cytochrome and alternative pathway respiration in tobacco. Effects of salicylic acid. Plant Physiol., 103: 877-883.

    PubMed  CAS  Google Scholar 

  • Roberts, A. G., and Oparka, K. J., 2003. Plasmodesmata and the control of symplasmic transport. Plant Cell Environ., 26: 103-124.

    Google Scholar 

  • Roberts, I. M., Wang, D., Findlay, K., and Maule, A. J., 1998. Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement. Virology, 245: 173-181.

    PubMed  CAS  Google Scholar 

  • Roberts, M.R., and Bowles, D.J., 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol., 119: 1243-1250.

    PubMed  CAS  Google Scholar 

  • Robson, C. A., and Vanlerberghe, G. C., 2002. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and –independent pathways of programmed cell death. Plant Physiol., 129: 1908- 1920.

    PubMed  CAS  Google Scholar 

  • Roos, W., Evers, S., Hieke, M., Tschöpe, M., and Schumann, B., 1998. Shifts of intracellular ph distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Plant Physiol., 118: 349-364.

    CAS  Google Scholar 

  • Sanders, D., Brownlee, C., and Harper, J. F., 1999. Communicating with calcium. Plant Cell, 11: 691-706.

    CAS  Google Scholar 

  • Sanders, D., Pelloux, J., Brownlee, C., and Harper, J. F., 2002. Calcium at the crossroads of signaling. Plant Cell., 14: S401-S417.

    PubMed  CAS  Google Scholar 

  • Schaller, A., and Frasson, D., 2001. Induction of wound response gene expression in tomato leaves by ionophores. Plant., 212: 431-435.

    CAS  Google Scholar 

  • Schaller, A., and Oecking, C., 1999. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell, 11: 263-272.

    PubMed  CAS  Google Scholar 

  • Schaller, A., Roy, P., and Amrhein, N., 2000. Salicylic acid-independent induction of pathogenesis-related gene expression by fusicoccin. Planta, 210: 599-606.

    PubMed  CAS  Google Scholar 

  • Scharff, T.J., and Perry, A.C., 1976. The effects of salicylic acid on metabolism and potassium ion content in yeast. Proc. Natl. Acad. Sci. USA., 151: 72-77.

    CAS  Google Scholar 

  • Schneider-Müller, S., Kurosaki, F., and Nishi, A., 1994. Role of salicylic acid and intracellular Ca2+in the induction of chitinase activity in carrot suspension culture. Physiol. Mol. Plant Pathol., 45: 101-109.

    Google Scholar 

  • Scholthof, H. B., 2005. Plant virus transport: motions of functional equivalence. Trends Plant Sci., 10: 376-382.

    PubMed  CAS  Google Scholar 

  • Schroeder, J. I., and Hagiwara, S., 1989. Cytosolic calcium regulates ion channels in plasma membrane of Vicia faba guard cells. Nature, 338: 427-430.

    Google Scholar 

  • Scott, A. C., and Allen, N. S., 1999. Changes in cytosolic pH within arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol., 121: 1291-1298.

    PubMed  CAS  Google Scholar 

  • Seo S., Okamoto M., Seto, H., Ishizuka, K., Sano, H., and Ohashi, Y., 1995. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science, 270: 1988-1992.

    PubMed  CAS  Google Scholar 

  • Serova, V. V., Raldugina, G. N., and Krasavina, M. S., 2006. Inhibition of callose hydrolysis by salicylic acid disturbs transport of tobacco mosaic virus. Dokl. Biol. Sci., 406: 705-708.

    Google Scholar 

  • Shah, J., and Klessig, D. F., 1996. Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related β-1,3-glucanase gene, PR-2d. Plant J., 10: 1089-1101.

    PubMed  CAS  Google Scholar 

  • Shettel, N.L., and Balke, N.E., 1983. Plant growth response to several allelopathic chemicals. Weed Sci., 31: 293-298.

    CAS  Google Scholar 

  • Shimoura, T., and Dijkstra, J., 1975. The occurrence of callose during the process of local lesion formation. Neth. J. Plant Path., 81: 107-121.

    Google Scholar 

  • Siegrist, J., Jeblick, W., and Kauss, H., 1994. Defense responses in infected and elicited cucumber (Cucumis sativum L.) hypocotyls segments exhibiting acquired resistance. Plant Physiol., 105: 1365-1374.

    PubMed  CAS  Google Scholar 

  • Simon-Plas, F., Rustérucci, C., Milat, M.-L., Humbert, C., Montillet, J-L., and Blein, J-P., 1997. Active oxygen species production in tobacco cells elicited by cryptogein. Plant Cell Environ., 20: 1573-1579.

    CAS  Google Scholar 

  • Singh, D. P., Moore, C. A., Gilliland, A., and Carr, J. P., 2004. Activation of multiple antiviral defence mechanisms by salicylic acid. Mol. Plant Pathol., 5: 57-63.

    CAS  Google Scholar 

  • Stäb, M. R., and Ebel, J., 1987. Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch. Biochem. Biophys., 257: 416-423.

    PubMed  Google Scholar 

  • Strasser, H., Tjetien, K. G., Himmelspach, K., and Matern, U., 1983. Rapid effect of an elicitor on uptake and intracellular distribution of phosphate in cultured parsley cells. Plant Cell Rep.,2: 140-143.

    CAS  Google Scholar 

  • Sun, Y-L, Zhao, Y, Hong, X., and Zhai, Z-H., 1999. Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett., 462:317-321.

    PubMed  CAS  Google Scholar 

  • Susin, S. A., Zamzami, N., and Kroemer, G., 1998. Mitochondria as regulators of apoptosis: doubt no more. Biochem. Biophys. Acta, 1366: 151-165.

    PubMed  CAS  Google Scholar 

  • Suzuki, K., and Shinshi, H., 1995. Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with fungal elicitors. Plant Cell, 7: 639-647.

    PubMed  CAS  Google Scholar 

  • Tena, G., and Renaudin, J-P., 1998. Cytosolic acidification but not auxin at physiological concentration is an activator of MAPkinases in tobacco cells. Plant J., 16: 173-182.

    PubMed  CAS  Google Scholar 

  • Tester, M., and MacRobbie, E. A. C., 1990. Cytoplasmic calcium affects the gating of potassium channels in the plasma membrane of Chara corallina: a whole-cell study using calcium-channel effectors. Planta, 180: 569-581.

    CAS  Google Scholar 

  • Thain, J. F., Doherty, H. M., Bowles, D. J., and Wildon, D. C., 1990. Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells. Plant Cell Environ., 13: 569-574.

    CAS  Google Scholar 

  • Thain, J.F., Gubb, I.R., and Wildon, D.C., 1995. Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ., 18: 211-214.

    Google Scholar 

  • Thulke, O., and Conrath, U., 1998. Salicylic acid had dual role in the activation of defence-related genes in parsley. Plant J., 14: 35-42.

    PubMed  CAS  Google Scholar 

  • Tiwari, B. S., Belenghi, B., and Levine, A., 2002. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol., 128: 1271-1281.

    PubMed  CAS  Google Scholar 

  • Tomiyama, K., Okamoto, H., and Katou, K., 1983. Effect of infection by Phytophthora infectants on the membrane potential of tomato cell. Physiol. Plant Pathol., 22: 233-243.

    Google Scholar 

  • Ton, J., and Mauch-Mani, B., 2004. β-Amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J., 38: 119-130.

    PubMed  CAS  Google Scholar 

  • Tucker, E. B., 1990. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetra acetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta, 182: 34-38.

    CAS  Google Scholar 

  • Tucker, E. B., and Boss, W. F., 1996. Mastoparan induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol., 111: 459-467.

    PubMed  CAS  Google Scholar 

  • Tunstall, M.J., Gale, J.E., and Ashmore, J.F., 1995. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig-cochlea. J. Physiol., 485: 739-752.

    PubMed  CAS  Google Scholar 

  • Vera-Estrella, R., Barkla, B. J., Higgins, V. J., and Blumwald, E., 1994. Activation of host plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol., 104: 209-215.

    PubMed  CAS  Google Scholar 

  • Vidal, S., de León, I. P., Denecke, J., and Palva, E. T., 1997. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant J., 11: 115-123.

    CAS  Google Scholar 

  • Vögeli-Lange, R., Hansen-Gehri, A., Boller, T., and Meins, F., Jr., 1988. Induction of the defense-related glucanohydrolases, β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci., 54: 171-176.

    Google Scholar 

  • von Ahsen, O., Renken, C., Perkins, G., Kluck, R M., Bossy-Wetzel, E., and Newmeyer, D. D., 2000. Preservation of mitochondrial structure and function after Bid or Bax-mediated cytochrome c release. J. Cell Biol., 150: 1027-1036.

    Google Scholar 

  • Waigmann, E., and Zambryski, P., 1995. Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell, 7: 2069-2079.

    PubMed  CAS  Google Scholar 

  • Waigmann, E., Lucas, W. J., Citovsky, V., and Zambryski, P., 1994. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmatal permeability. Proc. Natl. Acad. Sci. USA., 91:1433-1437.

    PubMed  CAS  Google Scholar 

  • Waldmann, T., Jeblick W., and Kauss, H., 1988. Induced net Ca+2 uptake and callose biosynthesis in cultured plant cells. Planta, 173: 88-93.

    CAS  Google Scholar 

  • Wang, T.S.C., Yang, T.K., and Chaung, T.T., 1967. Soil phenolics as growth inhibitors. Soil Sci., 103: 239-246.

    CAS  Google Scholar 

  • Ward, J. M., Pei, Z-M., and Schroeder, I., 1995. Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell, 7: 833-844.

    PubMed  CAS  Google Scholar 

  • Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J., 2000. tBid, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev., 14: 2060-2071.

    CAS  Google Scholar 

  • White, R. G., Badelt, K., Overall, R. L., and Vesk, M., 1994. Actin associated with plasmodesmata. Protoplasma, 180: 169-184.

    CAS  Google Scholar 

  • Whitehead, D.C., 1964. Identification of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acids in soil. Nature, 202: 417-418.

    PubMed  CAS  Google Scholar 

  • Wolf, S., Deom, C. M., Beachy, R. N., and Lucas, W. J., 1989. Movement protein of tobacco mosaic virus modifies plasmodesmata size exclusion limit. Science, 246: 377-379.

    PubMed  CAS  Google Scholar 

  • Wong, C. E., Carson, R. A. J., and Carr, J. P., 2002. Chemically induced virus resistance inArabidopsis thaliana is independent of pathogenesis-related protein expression and the NPR1 gene. Mol. Plant-Microbe Interact., 15: 75-81.

    PubMed  CAS  Google Scholar 

  • Wróbel-Kwiatkowska, M., Lorenc-Kukula, K., Starzycki, M., Oszmiañski, J., Kepczyñska, E., and Szopa, J., 2004. Expression of β-1,3-glucanase in flax causes increased resistance to fungi. Physiol. Mol. Plant Pathol., 65: 245-256.

    Google Scholar 

  • Wu, J. H., and Dimitman, J. E., 1970. Leaf structure and callose formation as determinants of TMV movement in bean leaves as revealed by UV irradiation studies. Virology, 40: 820-827.

    PubMed  CAS  Google Scholar 

  • Xie, Z., and Chen, Z., 1999. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol., 120: 217-226.

    CAS  Google Scholar 

  • Yahalom, A., Lando, R., Katz, A., and Epel, B. L., 1998. A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J. Plant Physiol., 153: 354-363.

    CAS  Google Scholar 

  • Yalpani, N., León, J., Lawton, M., and Raskin, I., 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol., 103: 315-321.

    PubMed  CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., and Raskin, I., 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809-818.

    Google Scholar 

  • Yang, Y., Qi, M., and Mei, C., 2004. Endogenous salicylic acid protect rice plants from oxidative damage caused by ageing as well as biotic and abiotic stress. Plant J., 40: 909-919.

    PubMed  CAS  Google Scholar 

  • Zambryski, P., and Crawford, K., 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol., 16: 393-421.

    PubMed  CAS  Google Scholar 

  • Zhang, P.C., Keleshian, A.M., and Sachs, F., 2001. Voltage-induced membrane movement. Nature, 413(6854): 428-432.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Dong, F. C., Gao, J. F., and Song, C. P., 2001a. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res., 11: 37-43.

    Google Scholar 

  • Zhang, X., Miao, Y. C., An, G. Y., Zhou, Y., Shangguan, Z. P., Gao, J. F., and Song, C. P., 2001b. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells. Cell Res., 11: 195-202.

    CAS  Google Scholar 

  • Zhang, X., Wang, H., Takemiya, A., Song, C-P., Kinoshita, T., and Shimazaki, K-I., 2004. Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. Plant Physiol., 136: 4150-4158.

    PubMed  CAS  Google Scholar 

  • Zhen, X.-H., and Li Y.-Z., 2004. Ultrastructural changes and location of β-1,3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid. J. Plant Physiol., 161: 1367-1377.

    PubMed  CAS  Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux J.-P., and Mauch-Mani, B., 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA, 97: 12920-12925.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Krasavina, M.S. (2007). Effect of Salicylic Acid on Solute Transport in Plants. In: Hayat, S., Ahmad, A. (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_3

Download citation

Publish with us

Policies and ethics