Skip to main content

Salicylic Acid and Local Resistance to Pathogens

  • Chapter
Salicylic Acid: A Plant Hormone

Abstract

Salicylic acid triggers is the system for acquired resistance to phytopathogens and hypersensitive cell death of infected cells. It was shown that in "sick" plants salicylic acid induced protective response, caused by increasing the level of multiple local reactive oxygen species with the participation of oxalate oxidase and also lignification of pathogen penetration zone by involving peroxidase. The localization of oxidative burst leads to the death of pathogen and isolation of host infected tissues that were provided with "chitin-specificity" of these enzymes. Induction of activity of wheat "chitin-specific" oxalateoxidase and anionic peroxidase, intensification of their secretion into intercellular space under salicylic acid influence, that provides successful defense reactions, close to pathogen infection structures have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, G.K., Rakwal, R., and Jwa, N.-S., 2002. Cloning and Characterization of a Jasmonate Inducible Rice (Oriza sativa L.) Peroxidase Gene OsPOX against Global Signaling Molecules and Certain Inhibitors of Kinase-Signaling Cascade(s). Plant Sci., 162:49–58.

    Article  CAS  Google Scholar 

  • Alvarez, M.E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol., 44: 429-442.

    Article  PubMed  CAS  Google Scholar 

  • Apostol, I., Heinstein, P.F., and Low, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol.,90: 109-116.

    Article  PubMed  CAS  Google Scholar 

  • Blee, K.A., Wheathely, E.R., Bonham V.A., Mitchell, G.P., Robertson, D., Slabas, A.R., Burrell, M.M., Wojtaszek, P., and Bolwell, G.P. 2001. Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesizes secondary walls as determined by biochemical and morphological parameters.Planta, 212: 404-415.

    Article  PubMed  CAS  Google Scholar 

  • Brownleader, M.D., Hopkins, J., Mobasheri, A., Dey, P.M., Jackson, P., and Trevan, M. 2002. Role of extension peroxidase in tomato (Lycopercicon esculentum Mill.) seedling growth. Planta, 210: 668-676.

    Article  Google Scholar 

  • Carpin, S., Crevecoeur, M.,de Meyer, M., Simon, P., Greppin, H., and Pennel, C., 2001. Identification of Ca2+-pectate binding peroxidase on an apoplastic peroxidase. Plant Cell, 13: 511-520.

    Article  PubMed  CAS  Google Scholar 

  • Caruso, C., Chilosi, G., Leonardi, L., Bertini, L., Margo, P., Buonocore, V., and Capolare, C., 2001. A Basic Peroxidase from wheat kernel with antifungal activity. Phytochem., 58: 743–750.

    Article  CAS  Google Scholar 

  • Chen, Z., Iyer, S., Caplan, A., Klessing, D.F., and Fan, B., 1997. Differential accumulation of salicylic acid-sensitive catalase in different rice tissues. Plant Physiol., 114: 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Custers, J.H.H.V., Harrison, S.J., Sela-Buurlage, M.B., Van Deventer, E., Lageweg, W., Howe, P.W., Van der Meijs, P.J., Ponstein, A.S., Simons, B.H., Melchers, L.S., and Stuiver, M.H., 2004. Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J., 39: 147-160.

    Article  PubMed  CAS  Google Scholar 

  • Dowd, P.F., Lagrimini, L.M., and Herms, D.A., 1999. Tobacco anionic peroxidase often increases resistance to insects in different dicotyledonous species. Pesticide Sci., 55: 633-634.

    Article  CAS  Google Scholar 

  • Dumas, B., Freyssinet, G., and Pallet, R.E., 1995. Tissue-specific expression of germin-like oxalate oxidase development and fungal infection of barley seedlings. Plant Physiol., 107: 1091-1096.

    PubMed  CAS  Google Scholar 

  • Durner, J., and Klessig, D.F., 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-Dichloroisonicotinic acid, two inducers of plant defense.Proc. Natl. Acad. Sci. USA ,.,92: 11312–11316.

    Article  PubMed  CAS  Google Scholar 

  • Guan, L. and Scandalios, J.G. 1995. Developmentally related responses of maize catalase gene to salicylic acid.Proc. Natl. Acad. Sci. USA., 92: 5930–5954.

    Article  PubMed  CAS  Google Scholar 

  • Hippeli, S., Heiser, I., and Elstner, E. F., 1999. Activated oxygen and free oxygen radicals in pathology: New insights and analogies between animals and plants. Plant Physiol. Biochem., 37: 167-178.

    Article  CAS  Google Scholar 

  • Hukelhoven, R., Fodor, J., Trujllo, M. and Kogel, K.-H. 2000. Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta, 212: 16-24.

    Article  Google Scholar 

  • Ingram, D.S., and MacDonald, M.V. 1986. In vitro selection of mutants. In: Nuclear techniques and in vitro culture for plant improvement. Vienna: IAEA, 241-257

    Google Scholar 

  • Kawano, T., and Muto, S., 2000. Mechanism of peroxidase action for salicylic acid induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot., 51: 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, J.F., Parrott, W.A., and Hill, N.S. 1991. Infection of somatic embryos of tall fescue with Acremonium coenophialum. Crop Sci., 31: 979-984.

    Google Scholar 

  • Khairullin, R. M., Yusupova, Z. R., and Maksimov, I. V. 2000. Protective responses of wheat treated with fungal pathogens: 1. Interaction of wheat anionic peroxidases with chitin, chitosan, and teliospores of Tilletia caries. Russian.J. Plant Physiol., 47: 97–102.

    CAS  Google Scholar 

  • Khairullin, R.M., Maksimov, I.V., and Yusupova, Z.R., 2001. Activation of anionic peroxidase isoforms in septoria- infected wheat plants and possible involvement of IAA and ABA in this process, Mikol. Fitopatol., 35: 47–53.

    CAS  Google Scholar 

  • Liu, M.-X., and Kolattukudy, P.E., 1997. Expression of an anionic peroxidase and oxidative burst in tomato cells induced by the elicitor from Verticillium albo-atrui // Acta Phytophysiol. Sin., 23: 220-226

    CAS  Google Scholar 

  • Maksimov, I.V., Ganiev, R.M., and Khairullin, R.M., 2002. Changes in the Levels of IAA, ABA, and Cytokinins in Wheat Seedlings Infected with Tilletia caries. Russian.J. Plant Physiol., 49: 248–252.

    Google Scholar 

  • Maksimov, I.V., Cherepanova, E.A., and Khairullin, R.M., 2003. “Chitin-specific” peroxidases in plants. Biochem. (Moscow), 68: 111-115.

    Article  CAS  Google Scholar 

  • Maksimov, I.V., Surina, O.B., Sakhabutdinova, A.R., Troshina, N.B., and Shakirova, F. M., 2004. Changes in the phytohormone levels in wheat calli as affected by salicylic acid and infection with Tilletia caries, a bunt pathogenic agent. Russian J. Plant Physiol., 51: 228–233

    Article  CAS  Google Scholar 

  • Maksimov, I.V., Cherepanova, E.A., Surina, O.B., and Sakhabutdinova, A.R. 2004. The effect of salicylic acid on peroxidase activity in wheat calli cocultured with the bunt pathogen. Russian J. Plant Physiol., 51: 480–485.

    Article  CAS  Google Scholar 

  • Metraux, J.-P., 2001. Systemic acquired resistance and salicylic acid: current state of knowledge.Eur. J. of Plant Pathol., 107: 13–18.

    Article  CAS  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Tren.Plant Sci., 7: 405-410.

    Article  CAS  Google Scholar 

  • Morimoto, S., Tateishi, N., Inuyama, M., Taura, F., Tanaka, H., and Shoyama, Y., 1999. Identification and molecular characterization of novel peroxidase with structural protein-like properties. J. Biol. Chem., 274:26192-26198.

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishnan, S., Liang, G. H., Trick,H. N., and Gill, B. S., 2001. Pathogenesis-related proteins and their genes in cereals. Plant Cell Tiss. Organ Cul., 64: 93-114.

    Article  CAS  Google Scholar 

  • Otte, O., and Barz, W., 2000. Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochem. , 53: 1-5.

    Article  CAS  Google Scholar 

  • Peberdy, J.F., 1988. Fungal cell walls – A review. In: Biochemistry of Cell Walls and Membranes in Fungi. Kuhn P.J., et al. (Eds.) Springer-Verlag: Berlin ets., 5-22.

    Google Scholar 

  • Peng, M., and Kuc, J., 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopath.,82: 696-699.

    CAS  Google Scholar 

  • Rasmussen, J., Smith, J., Williams, S. Burkhart, W., Ward, E., Somerville, S. C., Ryals, J., and Hammerschmidt, R., 1995. cDNA cloning and systemic expression of acidic peroxidases associated with systemic acquired resistance to disease in cucumber. Physiol. Mol. Plant Pathol.,46: 389-400.

    Article  CAS  Google Scholar 

  • Repka, V., and Jung, M., 1995. Organ-specific expression of the stress-related anionic peroxidases in cucumber flowers. Biol. Plant., 37: 523-531.

    CAS  Google Scholar 

  • Ride, J.R., 1980. The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiol. Plant Pathol., 16: 187-196.

    Article  CAS  Google Scholar 

  • Schafer, P., Huckelhoven, R., and Kogel, K.-H., 2004. The white Barley mutant Albostrains shows a supersusceptible but symptom less interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Mol. Plant-Microbe Interact., 17: 366-373.

    Article  PubMed  Google Scholar 

  • Shakirova, F.M., 2001. Nespetsificheskaya ustoichivost’ rastenii k stressovym faktoram i ee regulyatsiya (Unspecific Plant Resistance to Stress Factors and Its Regulation), Ufa: Gilem, 52.

    Google Scholar 

  • Sharma, P.T.R., and Singh, B.M., 2002. Salicylic acid induced insensitivity to culture filtrate of Fusarium oxysporum f.sp. zingiberi in the calli of Zingiber officinale Roscoe. Eur. J. Plant Pathol., 108: .31-39.

    Article  Google Scholar 

  • Siegel, S.M., 1957. Non - enzymic macromolecules as matrices in biological synthesis. The role of polysaccharides in peroxidase catalyzed lignin polymer formation from eugenol. J. Amer. Chem. Soc., 79: 1628-1632.

    Article  CAS  Google Scholar 

  • Thordal-Christensen, H., Zang, Z., Wei, Y., and Collinge, D., 1997. Subsellular localization of H$2$O$2$in plants. H$2$O$2$ accumulation in papillae and hypersensitive response during the barley - powdery mildew interaction. Plant J., 11: 1187-1194.

    Article  CAS  Google Scholar 

  • Van der Westhuizen, A..J., Qian, X.M., and Botha, A.M., 1998. Differential induction of apoiplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by russian wheat aphid infestation. Plant Cell Rep., 18: 132-137.

    Article  Google Scholar 

  • Wei, Y., Zhang, Z., Andersen, C.H., Schmelzer, E., Gregersen, P.L., Collinge, D.B., Smedegaard-Petersen, V., and Thordal-Christensen, H., 1998. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol. Biol., 36: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek, P., and Bolwell, G.P., 1995. Secondary cell-wall-specific glycoprotein(s) from French bean (Phaseolus vulgaris L.). Plant Physiol., 108: 1001-1012.

    Article  PubMed  CAS  Google Scholar 

  • Yarullina, L. G., Maksimov, I. V., and Yamaleev, A. M., 1997. The protective role of lignification from wheat infestation by septoriosis. Mikol. Fitopatol., 31: 65-69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Maksimov, I.V., Yarullina, L.G. (2007). Salicylic Acid and Local Resistance to Pathogens. In: Hayat, S., Ahmad, A. (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_11

Download citation

Publish with us

Policies and ethics