Skip to main content

The Regulation of Satellite Cell Function in Skeletal Muscle Regeneration and Plasticity

  • Chapter
  • 715 Accesses

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. L., Roy, R. R., and Edgerton, V. R. (1999). Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22, 1350–1360.

    PubMed  CAS  Google Scholar 

  • Allen, R. E., and Boxhorn, L. K. (1987). Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133, 567–572.

    PubMed  CAS  Google Scholar 

  • Allen, R. E., and Boxhorn, L. K. (1989). Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138, 311–315.

    PubMed  CAS  Google Scholar 

  • Allen, R. E., Dodson, M. V., and Luiten, L. S. (1984). Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Exp Cell Res 152, 154–160.

    PubMed  CAS  Google Scholar 

  • Allen, R. E., Sheehan, S. M., Taylor, R. G., Kendall, T. L., and Rice, G. M. (1995). Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165, 307–312.

    PubMed  CAS  Google Scholar 

  • Anastasi, S., Giordano, S., Sthandier, O., Gambarotta, G., Maione, R., Comoglio, P., and Amati, P. (1997). A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J Cell Biol 137, 1057–1068.

    PubMed  CAS  Google Scholar 

  • Anderson, J. E. (2000). A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11, 1859–1874.

    PubMed  CAS  Google Scholar 

  • Armand, O., Boutineau, A. M., Mauger, A., Pautou, M. P., and Kieny, M. (1983). Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72, 163–181.

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.

    PubMed  CAS  Google Scholar 

  • Asakura, A., Komaki, M., and Rudnicki, M. (2001). Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68, 245–253.

    PubMed  CAS  Google Scholar 

  • Asakura, A., and Rudnicki, M. A. (2002). Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30, 1339–1345.

    PubMed  Google Scholar 

  • Asakura, A., Seale, P., Girgis-Gabardo, A., and Rudnicki, M. A. (2002). Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159, 123–134.

    PubMed  CAS  Google Scholar 

  • Austin, L., Bower, J., Kurek, J., and Vakakis, N. (1992). Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation. J Neurol Sci 112, 185–191.

    PubMed  CAS  Google Scholar 

  • Austin, L., Bower, J. J., Bennett, T. M., Lynch, G. S., Kapsa, R., White, J. D., Barnard, W., Gregorevic, P., and Byrne, E. (2000). Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle Nerve 23, 1700–1705.

    PubMed  CAS  Google Scholar 

  • Barnard, W., Bower, J., Brown, M. A., Murphy, M., and Austin, L. (1994). Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle expresses lif mRNA. J Neurol Sci 123, 108–113.

    PubMed  CAS  Google Scholar 

  • Barton, E. R., Morris, L., Musaro, A., Rosenthal, N., and Sweeney, H. L. (2002). Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157, 137–148.

    PubMed  CAS  Google Scholar 

  • Beauchamp, J. R., Heslop, L., Yu, D. S., Tajbakhsh, S., Kelly, R. G., Wernig, A., Buckingham, M. E., Partridge, T. A., and Zammit, P. S. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151, 1221–1234.

    PubMed  CAS  Google Scholar 

  • Belcastro, A. N., Shewchuk, L. D., and Raj, D. A. (1998). Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 179, 135–145.

    PubMed  CAS  Google Scholar 

  • Birchmeier, C., and Gherardi, E. (1998). Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8, 404–410.

    PubMed  CAS  Google Scholar 

  • Bischoff, R. (1986). A satellite cell mitogen from crushed adult muscle. Dev Biol 115, 140–147.

    PubMed  CAS  Google Scholar 

  • Bischoff, R. (1990). Cell cycle commitment of rat muscle satellite cells. J Cell Biol 111, 201–207.

    PubMed  CAS  Google Scholar 

  • Bischoff, R. (1994). The satellite cell and muscle regeneration. In Myogenesis (New York, McGraw-Hill), pp. 97–118.

    Google Scholar 

  • Bischoff, R. (1997). Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208, 505–515.

    PubMed  CAS  Google Scholar 

  • Bittner, R. E., Schofer, C., Weipoltshammer, K., Ivanova, S., Streubel, B., Hauser, E., Freilinger, M., Hoger, H., Elbe-Burger, A., and Wachtler, F. (1999). Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199, 391–396.

    CAS  Google Scholar 

  • Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995). Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771.

    PubMed  CAS  Google Scholar 

  • Bogdanovich, S., Krag, T. O., Barton, E. R., Morris, L. D., Whittemore, L. A., Ahima, R. S., and Khurana, T. S. (2002). Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421.

    PubMed  CAS  Google Scholar 

  • Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., and Relaix, F. (2003). The formation of skeletal muscle: from somite to limb. J Anat 202, 59–68.

    PubMed  Google Scholar 

  • Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A., and Goodell, M. A. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9, 1520–1527.

    PubMed  CAS  Google Scholar 

  • Campbell, J. S., Wenderoth, M. P., Hauschka, S. D., and Krebs, E. G. (1995). Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells. Proc Natl Acad Sci U S A 92, 870–874.

    PubMed  CAS  Google Scholar 

  • Casar, J. C., Cabello-Verrugio, C., Olguin, H., Aldunate, R., Inestrosa, N. C., and Brandan, E. (2004). Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci 117, 73–84.

    PubMed  CAS  Google Scholar 

  • Chakravarthy, M. V., Abraha, T. W., Schwartz, R. J., Fiorotto, M. L., and Booth, F. W. (2000a). Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3’-kinase/Akt signaling pathway. J Biol Chem 275, 35942–35952.

    CAS  Google Scholar 

  • Chakravarthy, M. V., Davis, B. S., and Booth, F. W. (2000b). IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 89, 1365–1379.

    CAS  Google Scholar 

  • Charge, S. B., and Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev 84, 209–238.

    PubMed  CAS  Google Scholar 

  • Clarke, M. S., Khakee, R., and McNeil, P. L. (1993). Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J Cell Sci 106 (Pt 1), 121–133.

    PubMed  CAS  Google Scholar 

  • Clegg, C. H., Linkhart, T. A., Olwin, B. B., and Hauschka, S. D. (1987). Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105, 949–956.

    PubMed  CAS  Google Scholar 

  • Conboy, I. M., Conboy, M. J., Smythe, G. M., and Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577.

    PubMed  CAS  Google Scholar 

  • Conboy, I. M., and Rando, T. A. (2002). The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3, 397–409.

    PubMed  CAS  Google Scholar 

  • Cooper, R. N., Tajbakhsh, S., Mouly, V., Cossu, G., Buckingham, M., and Butler-Browne, G. S. (1999). In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112 (Pt 17), 2895–2901.

    PubMed  CAS  Google Scholar 

  • Corbel, S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M., and Rossi, F. M. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9, 1528–1532.

    PubMed  CAS  Google Scholar 

  • Cornelison, D. D., Filla, M. S., Stanley, H. M., Rapraeger, A. C., and Olwin, B. B. (2001). Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239, 79–94.

    PubMed  CAS  Google Scholar 

  • Cornelison, D. D., Olwin, B. B., Rudnicki, M. A., and Wold, B. J. (2000). MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol 224, 122–137.

    PubMed  CAS  Google Scholar 

  • Cornelison, D. D., Wilcox-Adelman, S. A., Goetinck, P. F., Rauvala, H., Rapraeger, A. C., and Olwin, B. B. (2004). Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18, 2231–2236.

    PubMed  CAS  Google Scholar 

  • Cornelison, D. D., and Wold, B. J. (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191, 270–283.

    PubMed  CAS  Google Scholar 

  • Crameri, R. M., Langberg, H., Magnusson, P., Jensen, C. H., Schroder, H. D., Olesen, J. L., Suetta, C., Teisner, B., and Kjaer, M. (2004). Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol 558, 333–340.

    PubMed  CAS  Google Scholar 

  • Csete, M., Walikonis, J., Slawny, N., Wei, Y., Korsnes, S., Doyle, J. C., and Wold, B. (2001). Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189, 189–196.

    PubMed  CAS  Google Scholar 

  • De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Cusella-De Angelis, M. G., Ponzetto, C., and Cossu, G. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147, 869–878.

    PubMed  Google Scholar 

  • De Craene, B., van Roy, F., and Berx, G. (2005). Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 17, 535–547.

    PubMed  Google Scholar 

  • Deasy, B. M., Gharaibeh, B. M., Pollett, J. B., Jones, M. M., Lucas, M. A., Kanda, Y., and Huard, J. (2005). Long-Term Self-Renewal of Postnatal Muscle-derived Stem Cells. Mol Biol Cell.

    Google Scholar 

  • DiMario, J., Buffinger, N., Yamada, S., and Strohman, R. C. (1989). Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244, 688–690.

    PubMed  CAS  Google Scholar 

  • DiMario, J., and Strohman, R. C. (1988). Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation 39, 42–49.

    PubMed  CAS  Google Scholar 

  • Edwall, D., Schalling, M., Jennische, E., and Norstedt, G. (1989). Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124, 820–825.

    PubMed  CAS  Google Scholar 

  • Engert, J. C., Berglund, E. B., and Rosenthal, N. (1996). Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135, 431–440.

    PubMed  CAS  Google Scholar 

  • Fedorov, Y. V., Jones, N. C., and Olwin, B. B. (2002). Atypical protein kinase Cs are the Ras effectors that mediate repression of myogenic satellite cell differentiation. Mol Cell Biol 22, 1140–1149.

    PubMed  CAS  Google Scholar 

  • Fedorov, Y. V., Rosenthal, R. S., and Olwin, B. B. (2001). Oncogenic Ras-induced proliferation requires autocrine fibroblast growth factor 2 signaling in skeletal muscle cells. J Cell Biol 152, 1301–1305.

    PubMed  CAS  Google Scholar 

  • Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    PubMed  CAS  Google Scholar 

  • Fiore, F., Planche, J., Gibier, P., Sebille, A., de Lapeyriere, O., and Birnbaum, D. (1997). Apparent normal phenotype of Fgf6-/- mice. Int J Dev Biol 41, 639–642.

    PubMed  CAS  Google Scholar 

  • Fiore, F., Sebille, A., and Birnbaum, D. (2000). Skeletal muscle regeneration is not impaired in Fgf6 -/- mutant mice. Biochem Biophys Res Commun 272, 138–143.

    PubMed  CAS  Google Scholar 

  • Florini, J. R., Ewton, D. Z., and Coolican, S. A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17, 481–517.

    PubMed  CAS  Google Scholar 

  • Florini, J. R., Ewton, D. Z., and Magri, K. A. (1991). Hormones, growth factors, and myogenic differentiation. Annu Rev Physiol 53, 201–216.

    PubMed  CAS  Google Scholar 

  • Floss, T., Arnold, H. H., and Braun, T. (1997). A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11, 2040–2051.

    PubMed  CAS  Google Scholar 

  • Gal-Levi, R., Leshem, Y., Aoki, S., Nakamura, T., and Halevy, O. (1998). Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402, 39–51.

    PubMed  CAS  Google Scholar 

  • Gamble, H. J., Fenton, J., and Allsopp, G. (1978). Electron microscope observations on human fetal striated muscle. J Anat 126, 567–589.

    PubMed  CAS  Google Scholar 

  • Garry, D. J., Meeson, A., Elterman, J., Zhao, Y., Yang, P., Bassel-Duby, R., and Williams, R. S. (2000). Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci U S A 97, 5416–5421.

    PubMed  CAS  Google Scholar 

  • Garry, D. J., Yang, Q., Bassel-Duby, R., and Williams, R. S. (1997). Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol 188, 280–294.

    PubMed  CAS  Google Scholar 

  • Gersbach, C. A., Byers, B. A., Pavlath, G. K., and Garcia, A. J. (2004). Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res 300, 406–417.

    PubMed  CAS  Google Scholar 

  • Gillespie, M. A., and Rudnicki, M. A. (2004). Something to SNF about. Nat Genet 36, 676–677.

    PubMed  CAS  Google Scholar 

  • Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.

    PubMed  CAS  Google Scholar 

  • Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., et al. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17, 71–74.

    PubMed  CAS  Google Scholar 

  • Gros, J., Manceau, M., Thome, V., and Marcelle, C. (2005). A common somitic origin for embryonic muscle progenitors and satellite cells. Nature.

    Google Scholar 

  • Gussoni, E., Bennett, R. R., Muskiewicz, K. R., Meyerrose, T., Nolta, J. A., Gilgoff, I., Stein, J., Chan, Y. M., Lidov, H. G., Bonnemann, C. G., et al. (2002). Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110, 807–814.

    PubMed  CAS  Google Scholar 

  • Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., and Mulligan, R. C. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    PubMed  CAS  Google Scholar 

  • Hartley, R. S., Bandman, E., and Yablonka-Reuveni, Z. (1992). Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153, 206–216.

    PubMed  CAS  Google Scholar 

  • Hawke, T. J. (2005). Muscle stem cells and exercise training. Exerc Sport Sci Rev 33, 63–68.

    PubMed  Google Scholar 

  • Hawke, T. J., and Garry, D. J. (2001). Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91, 534–551.

    PubMed  CAS  Google Scholar 

  • Hawke, T. J., Jiang, N., and Garry, D. J. (2003). Absence of p21CIP rescues myogenic progenitor cell proliferative and regenerative capacity in Foxk1 null mice. J Biol Chem 278, 4015–4020.

    PubMed  CAS  Google Scholar 

  • Hollnagel, A., Grund, C., Franke, W. W., and Arnold, H. H. (2002). The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol 22, 4760–4770.

    PubMed  CAS  Google Scholar 

  • Huard, J., Li, Y., and Fu, F. H. (2002). Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A, 822–832.

    PubMed  Google Scholar 

  • Hurme, T., Kalimo, H., Lehto, M., and Jarvinen, M. (1991). Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc 23, 801–810.

    PubMed  CAS  Google Scholar 

  • Ihle, J. N. (1995). Cytokine receptor signalling. Nature 377, 591–594.

    PubMed  CAS  Google Scholar 

  • Irintchev, A., Zeschnigk, M., Starzinski-Powitz, A., and Wernig, A. (1994). Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199, 326–337.

    PubMed  CAS  Google Scholar 

  • Jarvinen, T. A., Kannus, P., Jarvinen, T. L., Jozsa, L., Kalimo, H., and Jarvinen, M. (2000). Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports 10, 376–382.

    PubMed  CAS  Google Scholar 

  • Jennische, E., Ekberg, S., and Matejka, G. L. (1993). Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am J Physiol 265, C122–128.

    PubMed  CAS  Google Scholar 

  • Jo, C., Kim, H., Jo, I., Choi, I., Jung, S. C., Kim, J., Kim, S. S., and Jo, S. A. (2005). Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta 1743, 187–197.

    PubMed  CAS  Google Scholar 

  • Johnson, S. E., and Allen, R. E. (1993). Proliferating cell nuclear antigen (PCNA) is expressed in activated rat skeletal muscle satellite cells. J Cell Physiol 154, 39–43.

    PubMed  CAS  Google Scholar 

  • Jones, N. C., Fedorov, Y. V., Rosenthal, R. S., and Olwin, B. B. (2001). ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186, 104–115.

    PubMed  CAS  Google Scholar 

  • Jones, N. C., Tyner, K. J., Nibarger, L., Stanley, H. M., Cornelison, D. D., Fedorov, Y. V., and Olwin, B. B. (2005). The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169, 105–116.

    PubMed  CAS  Google Scholar 

  • Kaariainen, M., Jarvinen, T., Jarvinen, M., Rantanen, J., and Kalimo, H. (2000). Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports 10, 332–337.

    PubMed  CAS  Google Scholar 

  • Kadi, F., Charifi, N., Denis, C., Lexell, J., Andersen, J. L., Schjerling, P., Olsen, S., and Kjaer, M. (2005). The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch 451, 319–327.

    PubMed  CAS  Google Scholar 

  • Kadi, F., Schjerling, P., Andersen, L. L., Charifi, N., Madsen, J. L., Christensen, L. R., and Andersen, J. L. (2004). The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol 558, 1005–1012.

    PubMed  CAS  Google Scholar 

  • Kahn, E. B., and Simpson, S. B., Jr. (1974). Satellite cells in mature, uninjured skeletal muscle of the lizard tail. Dev Biol 37, 219–223.

    PubMed  CAS  Google Scholar 

  • Kami, K., and Senba, E. (1998). Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve 21, 819–822.

    PubMed  CAS  Google Scholar 

  • Kami, K., and Senba, E. (2002). In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. J Histochem Cytochem 50, 1579–1589.

    PubMed  CAS  Google Scholar 

  • Kastner, S., Elias, M. C., Rivera, A. J., and Yablonka-Reuveni, Z. (2000). Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48, 1079–1096.

    PubMed  CAS  Google Scholar 

  • Katagiri, T., Akiyama, S., Namiki, M., Komaki, M., Yamaguchi, A., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., and Suda, T. (1997). Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res 230, 342–351.

    PubMed  CAS  Google Scholar 

  • Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., and Suda, T. (1994). Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127, 1755–1766.

    PubMed  CAS  Google Scholar 

  • Kirk, S., Oldham, J., Kambadur, R., Sharma, M., Dobbie, P., and Bass, J. (2000). Myostatin regulation during skeletal muscle regeneration. J Cell Physiol 184, 356–363.

    PubMed  CAS  Google Scholar 

  • Komaki, M., Asakura, A., Rudnicki, M. A., Sodek, J., and Cheifetz, S. (2004). MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures. J Cell Sci 117, 1457–1468.

    PubMed  CAS  Google Scholar 

  • Kurek, J. B., Bower, J. J., Romanella, M., Koentgen, F., Murphy, M., and Austin, L. (1997). The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve 20, 815–822.

    PubMed  CAS  Google Scholar 

  • Kurek, J. B., Nouri, S., Kannourakis, G., Murphy, M., and Austin, L. (1996). Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19, 1291–1301.

    PubMed  CAS  Google Scholar 

  • LaBarge, M. A., and Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601.

    PubMed  CAS  Google Scholar 

  • Lee, J. Y., Qu-Petersen, Z., Cao, B., Kimura, S., Jankowski, R., Cummins, J., Usas, A., Gates, C., Robbins, P., Wernig, A., and Huard, J. (2000). Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150, 1085–1100.

    PubMed  CAS  Google Scholar 

  • Lee, S. J. (2004). Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20, 61–86.

    PubMed  CAS  Google Scholar 

  • Lee, S. J., and McPherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98, 9306–9311.

    PubMed  CAS  Google Scholar 

  • Lefaucheur, J. P., and Sebille, A. (1995). Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci Lett 202, 121–124.

    PubMed  CAS  Google Scholar 

  • Levinovitz, A., Jennische, E., Oldfors, A., Edwall, D., and Norstedt, G. (1992). Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Mol Endocrinol 6, 1227–1234.

    PubMed  CAS  Google Scholar 

  • Machida, S., Spangenburg, E. E., and Booth, F. W. (2003). Forkhead transcription factor FoxO1 transduces insulin-like growth factor’s signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol 196, 523–531.

    PubMed  CAS  Google Scholar 

  • Mansouri, A., Stoykova, A., Torres, M., and Gruss, P. (1996). Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122, 831–838.

    PubMed  CAS  Google Scholar 

  • Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67, 753–791.

    PubMed  CAS  Google Scholar 

  • Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493–495.

    PubMed  CAS  Google Scholar 

  • McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., and Kambadur, R. (2003). Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162, 1135–1147.

    PubMed  CAS  Google Scholar 

  • McKinnell, I. W., and Rudnicki, M. A. (2005). Developmental biology: one source for muscle. Nature 435, 898–899.

    PubMed  CAS  Google Scholar 

  • McPherron, A. C., Lawler, A. M., and Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90.

    PubMed  CAS  Google Scholar 

  • McPherron, A. C., and Lee, S. J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94, 12457–12461.

    PubMed  CAS  Google Scholar 

  • Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. E., and Rudnicki, M. A. (1996a). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10, 1173–1183.

    CAS  Google Scholar 

  • Megeney, L. A., Perry, R. L., LeCouter, J. E., and Rudnicki, M. A. (1996b). bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev Genet 19, 139–145.

    CAS  Google Scholar 

  • Mendler, L., Zador, E., Ver Heyen, M., Dux, L., and Wuytack, F. (2000). Myostatin levels in regenerating rat muscles and in myogenic cell cultures. J Muscle Res Cell Motil 21, 551–563.

    PubMed  CAS  Google Scholar 

  • Miller, K. J., Thaloor, D., Matteson, S., and Pavlath, G. K. (2000). Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278, C174–181.

    PubMed  CAS  Google Scholar 

  • Mitchell, C. A., McGeachie, J. K., and Grounds, M. D. (1996). The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration. Growth Factors 13, 37–55.

    PubMed  CAS  Google Scholar 

  • Mohammadi, M., Olsen, S. K., and Ibrahimi, O. A. (2005). Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16, 107–137.

    PubMed  CAS  Google Scholar 

  • Moore, R., and Walsh, F. S. (1993). The cell adhesion molecule M-cadherin is specifically expressed in developing and regenerating, but not denervated skeletal muscle. Development 117, 1409–1420.

    PubMed  CAS  Google Scholar 

  • Morlet, K., Grounds, M. D., and McGeachie, J. K. (1989). Muscle precursor replication after repeated regeneration of skeletal muscle in mice. Anat Embryol (Berl) 180, 471–478.

    CAS  Google Scholar 

  • Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E. R., Sweeney, H. L., and Rosenthal, N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27, 195–200.

    PubMed  CAS  Google Scholar 

  • Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N., and Rosenthal, N. (1999). IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400, 581–585.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., Nawa, K., and Ichihara, A. (1984). Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 122, 1450–1459.

    PubMed  CAS  Google Scholar 

  • Olguin, H. C., and Olwin, B. B. (2004). Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275, 375–388.

    PubMed  CAS  Google Scholar 

  • Oustanina, S., Hause, G., and Braun, T. (2004). Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. Embo J 23, 3430–3439.

    PubMed  CAS  Google Scholar 

  • Pardanaud, L., and Dieterlen-Lievre, F. (1999). Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 126, 617–627.

    PubMed  CAS  Google Scholar 

  • Pardanaud, L., Luton, D., Prigent, M., Bourcheix, L. M., Catala, M., and Dieterlen-Lievre, F. (1996). Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371.

    PubMed  CAS  Google Scholar 

  • Pette, D., and Dusterhoft, S. (1992). Altered gene expression in fast-twitch muscle induced by chronic low-frequency stimulation. Am J Physiol 262, R333–338.

    PubMed  CAS  Google Scholar 

  • Philip, B., Lu, Z., and Gao, Y. (2005). Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 17, 365–375.

    PubMed  CAS  Google Scholar 

  • Polesskaya, A., Seale, P., and Rudnicki, M. A. (2003). Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852.

    PubMed  CAS  Google Scholar 

  • Putman, C. T., Dusterhoft, S., and Pette, D. (1999). Changes in satellite cell content and myosin isoforms in low-frequency-stimulated fast muscle of hypothyroid rat. J Appl Physiol 86, 40–51.

    PubMed  CAS  Google Scholar 

  • Putman, C. T., Dusterhoft, S., and Pette, D. (2000). Satellite cell proliferation in low frequency-stimulated fast muscle of hypothyroid rat. Am J Physiol Cell Physiol 279, C682–690.

    PubMed  CAS  Google Scholar 

  • Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A., and Huard, J. (2002). Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157, 851–864.

    PubMed  CAS  Google Scholar 

  • Rabinovsky, E. D., Gelir, E., Gelir, S., Lui, H., Kattash, M., DeMayo, F. J., Shenaq, S. M., and Schwartz, R. J. (2003). Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. Faseb J 17, 53–55.

    PubMed  CAS  Google Scholar 

  • Rando, T. A., and Blau, H. M. (1994). Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125, 1275–1287.

    PubMed  CAS  Google Scholar 

  • Rantanen, J., Hurme, T., Lukka, R., Heino, J., and Kalimo, H. (1995). Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72, 341–347.

    PubMed  CAS  Google Scholar 

  • Rapraeger, A. C. (2000). Syndecan-regulated receptor signaling. J Cell Biol 149, 995–998.

    PubMed  CAS  Google Scholar 

  • Relaix, F., Rocancourt, D., Mansouri, A., and Buckingham, M. (2005). A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature.

    Google Scholar 

  • Rosenblatt, J. D., and Parry, D. J. (1992). Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol 73, 2538–2543.

    PubMed  CAS  Google Scholar 

  • Rosenblatt, J. D., Yong, D., and Parry, D. J. (1994). Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17, 608–613.

    PubMed  CAS  Google Scholar 

  • Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A., and Rudnicki, M. A. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144, 631–643.

    PubMed  CAS  Google Scholar 

  • Scata, K. A., Bernard, D. W., Fox, J., and Swain, J. L. (1999). FGF receptor availability regulates skeletal myogenesis. Exp Cell Res 250, 10–21.

    PubMed  CAS  Google Scholar 

  • Schiaffino, S., Bormioli, S. P., and Aloisi, M. (1976). The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol 21, 113–118.

    PubMed  CAS  Google Scholar 

  • Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F., and Lee, S. J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350, 2682–2688.

    PubMed  CAS  Google Scholar 

  • Schultz, E. (1976). Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147, 49–70.

    PubMed  CAS  Google Scholar 

  • Schultz, E. (1996). Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175, 84–94.

    PubMed  CAS  Google Scholar 

  • Schultz, E., and Jaryszak, D. L. (1985). Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30, 63–72.

    PubMed  CAS  Google Scholar 

  • Schultz, E., and McCormick, K. M. (1994). Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123, 213–257.

    PubMed  CAS  Google Scholar 

  • Seale, P., Ishibashi, J., Holterman, C., and Rudnicki, M. A. (2004a). Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell. Dev Biol 275, 287–300.

    CAS  Google Scholar 

  • Seale, P., Ishibashi, J., Scime, A., and Rudnicki, M. A. (2004b). Pax7 is necessary and sufficient for the myogenic specification of CD45+:Sca1+ stem cells from injured muscle. PLoS Biol 2, E130.

    Google Scholar 

  • Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786.

    PubMed  CAS  Google Scholar 

  • Semsarian, C., Wu, M. J., Ju, Y. K., Marciniec, T., Yeoh, T., Allen, D. G., Harvey, R. P., and Graham, R. M. (1999). Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576–581.

    PubMed  CAS  Google Scholar 

  • Sheehan, S. M., and Allen, R. E. (1999). Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 181, 499–506.

    PubMed  CAS  Google Scholar 

  • Sheehan, S. M., Tatsumi, R., Temm-Grove, C. J., and Allen, R. E. (2000). HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23, 239–245.

    PubMed  CAS  Google Scholar 

  • Shefer, G., Wleklinski-Lee, M., and Yablonka-Reuveni, Z. (2004). Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117, 5393–5404.

    PubMed  CAS  Google Scholar 

  • Sherwood, R. I., Christensen, J. L., Conboy, I. M., Conboy, M. J., Rando, T. A., Weissman, I. L., and Wagers, A. J. (2004). Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543–554.

    PubMed  CAS  Google Scholar 

  • Smith, C. K., 2nd, Janney, M. J., and Allen, R. E. (1994). Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 159, 379–385.

    PubMed  CAS  Google Scholar 

  • Smith, J., Goldsmith, C., Ward, A., and LeDieu, R. (2000). IGF-II ameliorates the dystrophic phenotype and coordinately down-regulates programmed cell death. Cell Death Differ 7, 1109–1118.

    PubMed  CAS  Google Scholar 

  • Spangenburg, E. E., and Booth, F. W. (2002). Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 283, C204–211.

    PubMed  CAS  Google Scholar 

  • Tapscott, S. J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132, 2685–2695.

    PubMed  CAS  Google Scholar 

  • Tatsumi, R., Anderson, J. E., Nevoret, C. J., Halevy, O., and Allen, R. E. (1998). HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194, 114–128.

    PubMed  CAS  Google Scholar 

  • Tatsumi, R., Hattori, A., Ikeuchi, Y., Anderson, J. E., and Allen, R. E. (2002). Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13, 2909–2918.

    PubMed  CAS  Google Scholar 

  • Tatsumi, R., Sheehan, S. M., Iwasaki, H., Hattori, A., and Allen, R. E. (2001). Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267, 107–114.

    PubMed  CAS  Google Scholar 

  • Taylor-Jones, J. M., McGehee, R. E., Rando, T. A., Lecka-Czernik, B., Lipschitz, D. A., and Peterson, C. A. (2002). Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123, 649–661.

    PubMed  CAS  Google Scholar 

  • Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., and Kambadur, R. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275, 40235–40243.

    PubMed  CAS  Google Scholar 

  • Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288, R345–353.

    PubMed  CAS  Google Scholar 

  • Torrente, Y., Tremblay, J. P., Pisati, F., Belicchi, M., Rossi, B., Sironi, M., Fortunato, F., El Fahime, M., D’Angelo, M. G., Caron, N. J., et al. (2001). Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152, 335–348.

    PubMed  CAS  Google Scholar 

  • Wada, M. R., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S., and Hashimoto, N. (2002). Generation of different fates from multipotent muscle stem cells. Development 129, 2987–2995.

    PubMed  CAS  Google Scholar 

  • Wagner, K. R., McPherron, A. C., Winik, N., and Lee, S. J. (2002). Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 52, 832–836.

    PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., and Rivera, A. J. (1994). Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164, 588–603.

    PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Rudnicki, M. A., Rivera, A. J., Primig, M., Anderson, J. E., and Natanson, P. (1999a). The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210, 440–455.

    CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Seger, R., and Rivera, A. J. (1999b). Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47, 23–42.

    CAS  Google Scholar 

  • Zammit, P. S., Golding, J. P., Nagata, Y., Hudon, V., Partridge, T. A., and Beauchamp, J. R. (2004). Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166, 347–357.

    PubMed  CAS  Google Scholar 

  • Zammit, P. S., Heslop, L., Hudon, V., Rosenblatt, J. D., Tajbakhsh, S., Buckingham, M. E., Beauchamp, J. R., and Partridge, T. A. (2002). Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281, 39–49.

    PubMed  CAS  Google Scholar 

  • Zarnegar, R., and Michalopoulos, G. K. (1995). The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 129, 1177–1180.

    PubMed  CAS  Google Scholar 

  • Zeschnigk, M., Kozian, D., Kuch, C., Schmoll, M., and Starzinski-Powitz, A. (1995). Involvement of M-cadherin in terminal differentiation of skeletal muscle cells. J Cell Sci 108 (Pt 9), 2973–2981.

    PubMed  CAS  Google Scholar 

  • Zhao, P., Iezzi, S., Carver, E., Dressman, D., Gridley, T., Sartorelli, V., and Hoffman, E. P. (2002). Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration. J Biol Chem 277, 30091–30101.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Gillespie, M.A., Holterman, C.E., Rudnicki, M.A. (2006). The Regulation of Satellite Cell Function in Skeletal Muscle Regeneration and Plasticity. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_6

Download citation

Publish with us

Policies and ethics