Skip to main content

Current Concepts for Treelife Limitation at the Upper Timberline

  • Chapter
Book cover Trees at their Upper Limit

Part of the book series: Plant Ecophysiology ((KLEC,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (2002) The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg, New York, pp 117-133

    Google Scholar 

  • Arno MF (1984) Timberline: mountain and arctic forest frontiers. The Mountaineers, Seattle

    Google Scholar 

  • Aulitzky H (1961) Die Bodentemperaturverhältnisse in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 59: 153-208

    Google Scholar 

  • Aulitzky H, Turner H (1982) Bioklimatische Grundlagen einer standortsgemäßen Bewirtschaftung des subalpinen Lärchen-Arvenwaldes. Mitteilungen Eidgenössische Anstalt für das Forstliche Versuchswesen 58: 327-580

    Google Scholar 

  • Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine treeline. Oecologia 47: 252-256

    Google Scholar 

  • Beck E, Schulze E-D, Senser J, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in afroalpine ‘‘giant rosette’’ plants. Planta 162: 276-282

    Google Scholar 

  • Bernoulli M, Körner Ch (1999) Dry matter allocation in treeline trees. Phyton 39: 7-12

    Google Scholar 

  • Bonan GB (1992) Soil temperature as an ecological factor in boreal forests. In: Shugart HH, Leemans R, Bonan GB (eds) A system analysis of the global boreal forest. Cambridge University Press, Cambridge, pp 126-143

    Google Scholar 

  • Boysen-Jensen P (1932) Die Stoffproduktion der Pflanzen. Fischer, Jena

    Google Scholar 

  • Brockmann-Jerosch H (1919) Baumgrenze und Klimacharakter. Pflanzengeographische Kommission der Schweizerischen Naturforschenden Gesellschaft. Beiträge zur Landesaufnahme 6. Rascher und Cie, Zürich

    Google Scholar 

  • Cairns DM (1998) Modelling controls on pattern at alpine treeline. Geographical and Environmental Modelling 2: 43-64

    Google Scholar 

  • Cairns DM, Malanson GP (1998) Environmental variables influencing the carbon balance at the alpine treeline: a model approach. Journal of Vegetation Science 9: 697-692

    Google Scholar 

  • Christersson L, von Fricks H, Sihe Y (1988) Damage to conifer seedlings by summer frost and winter drought. In: Sakai A, Larcher W (eds) Plant cold hardiness. Alan R Liss, Inc., pp 203-210

    Google Scholar 

  • Ciu M, Smith WK (1991) Photosynthesis, water relations and mortality in Abies lasiocarpa seedlings during natural establishment. Tree Physiology 8: 37-46

    Google Scholar 

  • Cogbill CF, White PS (1991) The latitude-elevation relationship for spruce-fir forest line along the Appalachian mountain chain. Vegetatio 94: 153-175

    Google Scholar 

  • Däniker A (1923) Biologische Studien über Baum- und Waldgrenzen, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahres-schrift der Naturforschenden Gesellschaft in Zürich 68: 1-102

    Google Scholar 

  • Daubenmire R (1954) Alpine treelines in the Americans and their interpretation. Butler University Botanical Studies 2: 119-136

    Google Scholar 

  • Demmig-Adams B, Adams III WW (1994) Light stress and photoprotection related to the xanthophyll cycle. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 105-126

    Google Scholar 

  • Donaubauer E (1963) Über die Schneeschütte-Krankheit (Phacidium infestans Karst.) der Zirbe (Pinus cembra L.) und einiger Begleitpilze. Mitteilungen der Forstlichen Versuchsanstalt Mariabrunn 60: 147-166

    Google Scholar 

  • Dunwiddie PW (1977) Recent tree invasion of subalpine meadows in the Wind River Mountains, Wyoming. Arctic and Alpine Research 11: 234-251

    Google Scholar 

  • Ellenberg H (1975) Vegetationsstufen in perhumiden bis perariden Bereichen der tropischen Anden. Phytocoenologia 2: 368-387

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Elstner EF, Oßwald W (1994) Mechanisms of oxygen activation during plant stress. Proceedings of the Royal Society of Edinburgh 102b: 131-154

    Google Scholar 

  • Franklin JF, Moir WH, Douglas GW, Wiberg C (1971) Invasion of subalpine meadows by trees in the Cascade Range, Washington and Oregon. Arctic and Alpine Research 3: 215-224

    Google Scholar 

  • Franz H (1979) Ökologie der Hochgebirge. Ulmer, Stuttgart

    Google Scholar 

  • Friedel H (1967) Verlauf der alpinen Waldgrenze im Rahmen anliegender Gebirgsgelände. Mitteilungen der Forstlichen Bundesversuchsanstalt Wien 75: 81-172

    Google Scholar 

  • Friedland AL, Boyce RL, Webb ET (1992) Winter and early spring microclimate of a subalpine spruce-fir forest canopy in central New Hampshire. Atmospheric Environment 24A: 1361-1369

    Google Scholar 

  • Garyston SJ, Campbell CD (1996) Functional biodiversity of microbial communities in the rhizosphere of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiology 16: 1031-1038

    Google Scholar 

  • Germino MJ, Smith WK (1999) Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant, Cell and Environment 22: 407-415

    Google Scholar 

  • Germino MJ, Smith WK (2000) Differences in microsite, plant form and low-temperature photoinhibition in alpine plants. Arctic, Antarctic, and Alpine Research 30: 388-396

    Google Scholar 

  • Germino MJ, Smith WK, Resor AC (2003) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology 162: 157-168

    Google Scholar 

  • Goldstein G, Meizner FC, Rada F (1994) Environmental biology of a tropical treeline species, Polylepis sericea. In: Rundel PW, Smith AP, Meizner FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 1269-149

    Google Scholar 

  • Grace J (1977) Plant response to wind. Academic Press, London

    Google Scholar 

  • Grier C (1988) Foliage loss due to snow, wind, and winter drying damage: its effects on leaf biomass of some western conifers. Canadian Journal of Forest Research 18: 1097-1102

    Google Scholar 

  • Gross M (1989) Untersuchungen an Fichten der alpinen Waldgrenze: Dissertationes Botanicae 139. Kramer, Berlin, Stuttgart

    Google Scholar 

  • Gross M, Rainer I, Tranquillini W (1991) Über die Frostresistenz der Fichte mit besonderer Berücksichtigung der Zahl der Gefrierzyklen und der Geschwindigkeit der Temperaturänderung beim Frieren und Auftauen. Forstwissenschaftliches Centralblatt 110: 207-217

    Google Scholar 

  • Hadley JL, Smith WK (1987) Influence of krummholz mat microclimate on needle physiology and survival. Oecologia 73: 82-90

    Google Scholar 

  • Hadley JL, Smith WK (1989) Wind erosion of leaf surface wax in timberline conifers. Arctic and Alpine Research 21: 392-398

    Google Scholar 

  • Hadley JL, Smith WK (1990) Influence of leaf surface wax and leaf area to water content ratio on cuticular transpiration in western conifers, U.S.A. Canadian Journal of Forest Research 20: 1306-1311

    Google Scholar 

  • Häsler R, Streule A, Turner H (1999) Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine treeline. Phyton 39: 47-52

    Google Scholar 

  • Havranek WM (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und die Stoffproduktion an der Waldgrenze. Angewandte Botanik 46: 101-116

    Google Scholar 

  • Havranek WM (1987) Physiologische Reaktionen auf Klimastreß bei Bäumen an der Waldgrenze. GSF Bericht 10: 23-36

    Google Scholar 

  • Havranek WM, Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 95-124

    Google Scholar 

  • Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebieten der Erde und ihr Abstand zur Schneegrenze. Kölner Geographische Arbeiten 5

    Google Scholar 

  • Hoch G, Körner Ch (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia: 219-224

    Google Scholar 

  • Hoch G, Popp M, Körner Ch (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98: 361-374

    CAS  Google Scholar 

  • Holtmeier FK (1974) Geoökologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Steiner, Wiesbaden

    Google Scholar 

  • Holtmeier FK (1993) The upper timberline: ecological and geographical aspects. In: Anfodillo T, Urbinati C (eds) Ecologia delle foreste di alta quota. Pubblicazioni del Corso di Cultura in Ecologia 30, pp 1-26

    Google Scholar 

  • Holtmeier F-K (2003) Mountain timberlines. Ecology, patchiness, and dynamics. Advances in Global Change Research, vol 14. Kluwer Academic Publishers, Dordrecht, Boston, London

    Google Scholar 

  • Holzer K (1959) Winterliche Schäden an Zirben nahe der alpinen Baumgrenze. Centralblatt für das Gesamte Forstwesen 76: 232-244

    Google Scholar 

  • James JC, Grace J, Hoad SP (1992) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. Journal of Ecology 82: 297-306

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) Global controls of forest line elevations in the northern and southern hemispheres. Global Ecology and Biogeography 9: 253-268

    Google Scholar 

  • Johnson DM, Germino MJ, Smith WK (2004) Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiology 24: 377-386

    PubMed  Google Scholar 

  • Jordan DN, Smith WK (1994) Energy balance analysis of night-time leaf temperatures and frost formation in a subalpine environment. Agricultural and Forest Meteorology 71: 359-372

    Google Scholar 

  • Karlsson PS, Weih M (2001) Soil temperature near the distribution limit of mountain birch (Betula pubescens ssp. czerepanovii): implications for seedling nitrogen economy and survival. Arctic, Antarctic, and Alpine Research 33: 88-92

    Google Scholar 

  • Körner Ch (1994) Leaf conductance in the major vegetation types of the globe. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological Studies, vol 100. Springer, Berlin, Heidelberg, New York, pp 463-490

    Google Scholar 

  • Körner Ch (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115: 445-459

    Google Scholar 

  • Körner Ch (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner Ch, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31: 713-732.

    Google Scholar 

  • Kronfuss H (1994) Der Einfluß der Lufttemperatur auf das Höhenwachstum der Zirbe. Centralblatt für das Gesamte Forstwesen 11: 165-181

    Google Scholar 

  • Kullmann L (1996) Rise and demise of cold-climate Picea abies forest in Sweden. New Phytologist 134: 243-256

    Google Scholar 

  • Kuuluvainen T, Sprugel DG, Brooks JR (1996) Hydraulic architecture and structure of Abies lasiocarpa seedlings in three subalpine meadows of different moisture status a in the Eastern Olympic Mountains, Washington. Arctic and Alpine Research 28: 60-64

    Google Scholar 

  • Larcher W (1957) Frosttrocknis an der Waldgrenze und in der alpinen Zwergstrauchheide. Veröffentlichungen Museum Ferdinandeum, Innsbruck 37: 49-81

    Google Scholar 

  • Larcher W (1963) Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Berichte des Naturwissenschaftlich Medizini-schen Vereins in Innsbruck 53: 125-137

    Google Scholar 

  • Larcher W (1980) Klimastreß im Gebirge – Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfälische Akademie der Wissenschaften, Vorträge 291: 49-88

    Google Scholar 

  • Larcher W (1985) Winter stress in high mountains. In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forests: research and management. Berichte Eidgenössische Anstalt für das Forstliche Versuchswesen 270, pp 11-20

    Google Scholar 

  • Lee KE, Pankhurst CE (1992) Soil organisms and sustainable productivity. Australian Journal of Soil Research 30: 855-892

    Google Scholar 

  • Levitt J (1972) Response of plants to environmental stresses. Academic Press, New York, London

    Google Scholar 

  • Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Ergebnisse der Dendrometermessungen 1976-79. Mitteilungen der Forstlichen Bundesversuchsanstalt Wien 142: 416-441

    Google Scholar 

  • Michealis P (1934a) Ökologische Studien an der Baumgrenze, IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrbuch für wissenschaftliche Botanik 80: 169-247

    Google Scholar 

  • Michealis P (1934b) Ökologische Studien an der Baumgrenze, V. Osmotischer Wert und Wassergehalt während des Winters in den verschiedenen Höhenlagen. Jahrbuch für wissenschaftliche Botanik 80: 337-362

    Google Scholar 

  • Miller SL, McLean TM, Stanton NL, Williams SE. (1998) Survivability, physiognomy and mycorrhization of first year conifer seedlings following fire in Grand Teton National Park. Canadian Journal of Forest Research 28: 115-122

    Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Nortwest conifers and fungi. Forest Science 28: 423-458

    Google Scholar 

  • Moser M (1967) Die ektotrophe Ernährungsweise an der Waldgrenze. Mitteilungen der Forstlichen Bundesversuchsanstalt Wien 75: 357-380

    Google Scholar 

  • Müller-Stohl WR (1954) Beiträge zur Ökologie der Waldgrenze am Feldberg im Schwarzwald. In: Janchen E (ed) Angewandte Pflanzensoziologie, Festschrift Erwin Aichinger, vol 2. Springer, Wien, pp 824-847

    Google Scholar 

  • Neuner G, Ambach, D, Buchner O (1999) Readiness to frost harden during the dehardening period measured in situ in leaves of Rhododendron ferrugineum L. at the alpine timberline. Flora 194: 289-296

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione. Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249-279

    CAS  Google Scholar 

  • Norton DA, Schönenberger W (1984) The growth forms and ecology of Nothofagus solandri at the alpine timberline, Craigieburn Range, New Zealand. Arctic and Alpine Research 16: 361-370

    Google Scholar 

  • Olsson PA, Jakobsen I, Wallander H (2002) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: Van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg, New York, pp 937-115

    Google Scholar 

  • Öquist G, Huner NPA (1991) Effect of cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring cereals: a fluorescence analysis. Functional Ecology 5: 91-100

    Google Scholar 

  • Oswald H (1963) Verteilung und Zuwachs der Zirbe (Pinus cembra L.) der subalpinen Stufe an einem zentralalpinen Standort. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 60: 439-499

    Google Scholar 

  • Paulsen J, Weber UM, Körner Ch (2000) Tree growth near treeline: abrupt or gradual reduction with altitude. Arctic, Antarctic, and Alpine Research 32: 14-20

    Google Scholar 

  • Perkins TD, Adams GT (1995) Rapid freezing induces winter injury symptomatology in red spruce foliage. Tree Physiology 15: 259-266

    PubMed  Google Scholar 

  • Perkins TD, Adams GT, Klein RM (1991) Desiccation or freezing? Mechanisms of winter injury to red spruce foliage. American Journal of Botany 78: 1207-1217

    Google Scholar 

  • Peters J, Jimenez MS, Morales D (1999) Effect of extreme temperatures on the photosynthetic apparatus of the canarian endemic pine (Pinus canariensis). Zeitschrift für Naturforschung 54: 681-687

    CAS  Google Scholar 

  • Piussi P, Schneider A (1985) Die obere Wald- und Baumgrenze im Pfitschtal (Südtitol). Centralblatt für das gesamte Forstwesen 102: 234-246

    Google Scholar 

  • Platter W (1976) Wasserhaushalt, cuticuläres Transpirationsvermögen und Dicke der Cutinschichten einiger Nadelholzarten in verschiedenen Höhenlagen und nach experimenteller Verkürzung der Vegetationsperiode. Ph.D. thesis, Innsbruck University

    Google Scholar 

  • Polle A, Rennenberg H (1994) Photooxidative stress in trees. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 199-218

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Meizner F (1985) Daily and seasonal osmotic changes in a tropical treeline species. Journal of Experimental Botany 36: 989-1000

    Google Scholar 

  • Rada F, Azocar A, Briceno B, Gonzalez J, Garcia-Nunez C (1996) Carbon and water balance in Polylepis sericera, a tropical treeline species. Trees 10: 218-222

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376-391

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytologist 88: 341-352

    Google Scholar 

  • Rohmeder E (1941) Die Zirbelkiefer (Pinus cembra) als Hochgebirgsbaum. Jahrbuch zum Schutze der Alpenpflanzen und Tiere 13: 27-39

    Google Scholar 

  • Rundel PW (1994) Tropical alpine climates. In: Rundel PW, Smith AP, Meizner FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 21-44

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptations to freezing stress. Ecological Studies, vol 62. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Schulze E-D, Mooney HA, Dunn EL (1967) Wintertime photosynthesis of bristelcone pine (Pinus aristata) in the White Mountains of California. Ecology 48: 1044-1047

    Google Scholar 

  • Schwarz R (1983) Simulationsstudien zur Theorie der oberen Waldgrenze. Erdkunde 37: 1-11

    Google Scholar 

  • Scuderi LA (1987) Late-Holocene upper timberline vegetation in the Southern Sierra Nevada, California, USA. Nature 325: 242-244

    Google Scholar 

  • Slatyer RO, Noble IR (1992) Dynamics of treelines. In: Hansen A, DiCastri F (eds) Landscape boundaries: consequences for biotic diversity and ecological flows. Ecological Studies, vol 92. Springer, Berlin, Heidelberg, New York, pp 346-359

    Google Scholar 

  • Sowell JB, Kouitnik DL, Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arctic and Alpine Research 14: 97-103

    Google Scholar 

  • Stevens GC, Fox JF (1991) The cause of treeline. Annual Review of Ecology and Systematics 22: 177-191

    Google Scholar 

  • Steinbjörnsson B, Nordell O, Kauhanen H (1992) Nutrient relations of mountain birch growth at and below the elevational tree-line in Swedish Lapland. Functional Ecology 6: 213-220

    Google Scholar 

  • Stirmbeck GR, Johnsdon AH, Vann DR (1993) Midwinter needle temperature and winter injury on montane red spruce. Tree Physiology 13: 131-144

    Google Scholar 

  • Sveinbjörnsson B, Kauhanen H, Nordell O (1996) Treeline ecology of mountain birch in the Torneträsk area. Ecological Bulletins 45: 65-70

    Google Scholar 

  • Tausz M, Jiménez MS, Grill D (1998a) Antioxidative defence and photoprotection in pine needles under field conditions – a multivariate approach to evaluate patterns of physiological responses at natural sites. Physiologia Plantarum 104: 760-764

    CAS  Google Scholar 

  • Tausz M, Stabentheiner E, Wonisch A, Grill D (1998b) Classification of biochemical response patterns for the assessment of environmental stress to Norway spruce. Environmental Science and Pollution Research, Special Issue No 1: 96-100

    Google Scholar 

  • Tranquillini W (1959) Die Stoffproduktion der Zirbe an der Waldgrenze während eines Jahres. 1. Standortsklima und CO2-Assimilation. Planta 54: 107-129

    CAS  Google Scholar 

  • Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecological Studies, vol 19. Springer, Springer Berlin, Heidelberg, New York, pp 473-491

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Ecological Studies, vol 31. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Tranquillini W (1982) Frost drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopaedia of plant physiology 12B. Physiological plant ecology II. Springer, k Berlin, Heidelberg, New York, pp 379-400

    Google Scholar 

  • Tranquillini W, Turner H (1961) Untersuchungen über die Pflanzentemperaturen in der subalpinen Stufe mit besonderer Berücksichtigung der Nadeltemperatur der Zirbe. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 59: 127-151

    Google Scholar 

  • Tranquillini W, Schütz W (1970) Über die Rindenatmung einiger Bäume an der Waldgrenze. Centralblatt für das Gesamte Forstwesen 87: 42-60

    Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arctic and Alpine Research 5: A3-A18

    Google Scholar 

  • Tschermak L (1950) Waldbau auf pflanzengeographisch-ökologischer Grundlage. Springer, Wien

    Google Scholar 

  • Turner H (1961) Standortsuntersuchungen in der subalpinen Stufe: Die Niederschlags- und Schneeverhältnisse. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 59: 265-315

    Google Scholar 

  • Turner H (1968) Über ‘‘Schneeschliff’’ in den Alpen. Wetter und Leben 20: 192-200

    Google Scholar 

  • Van Gradingen P, Grace J, Jeffree CE (1991) Abrasive damage by wind to the needle surface of Pinus sylvestris L. and Picea sitchensis (Bong.) Carr. Plant, Cell and Environment 14: 185-193

    Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry R (eds) Arctic and alpine environments. Methuen Publishing, London, pp 371-402.

    Google Scholar 

  • Wardle P (1981) Winter desiccation of conifer needles simulated by artificial freezing. Arctic and Alpine Research 13: 419-423

    Google Scholar 

  • Wardle P (1993) Causes of alpine timberline: a review. In: Alden J (ed) Forest development in cold climates. Plenum Press, pp 89-103

    Google Scholar 

  • Wieser G (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiology 17: 473-477

    PubMed  Google Scholar 

  • Wieser G (2000) Seasonal Variation of leaf conductance in a subalpine Pinus cembra during the winter months. Phyton 40: 185-190

    Google Scholar 

  • Wieser G (2002) The role of sapwood temperature variations within Pinus cembra on calculated stem respiration: implications for upscaling and predicted global warming. Phyton 42: 1-11

    Google Scholar 

  • Wieser G, Gigele T, Pausch H (2005) The carbon budget of an adult Pinus cembra tree at the alpine timberline in the Central Austrian Alps. European Journal of Forest Research 124: 1-8

    Google Scholar 

  • Zotov VD (1938) Some correlations between vegetation and climate in New Zealand. New Zealand Journal of Science and Technology 19: 474-487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wieser, G., Tausz, M. (2007). Current Concepts for Treelife Limitation at the Upper Timberline. In: Wieser, G., Tausz, M. (eds) Trees at their Upper Limit. Plant Ecophysiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5074-7_1

Download citation

Publish with us

Policies and ethics