Skip to main content

Abstract

Alzheimer’s disease (AD) remains one of the most disabling health conditions in elderly population worldwide. The socio-economic burden of the disease is likely to increase due to increasing life expectancy. Increasing understanding of AD pathogenesis suggests heterogeneous nature of this disease, with number of underlying mechanisms operating simultaneously, contributing to the ultimate phenotype. Neuropathological hallmarks of AD include senile plaques and neurofibrillary tangles, neuronal atrophy and cortical neurodegeneration. There is currently no cure for AD and the available treatments can provide only a degree of symptomatic benefit to patients with mild-to-moderate AD. In this review, we focus on the current understanding of AD, available symptomatic treatments and potential disease modifying opportunities being pursued in the pharmaceutical industry as well as in academia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama, H., Barger, S., Barnum, S., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging, 21: 383–421.

    PubMed  CAS  Google Scholar 

  • Bimonte-Nelson, H.A., Hunter, C.L., Nelson, M.E. and Granholm, A.C. (2003) Frontal cortex BDNF levels correlate with working memory in an animal model of Down syndrome. Behav Brain Res., 139: 47–57.

    PubMed  CAS  Google Scholar 

  • Bongers, G., Leurs, R., Robertson, J., Raber, J. (2004) Role of H3-receptor-mediated signaling in anxiety and cognition in wild-type and Apoe–/–mice. Neuropsychopharmacology, 29: 441–449.

    PubMed  CAS  Google Scholar 

  • Bourin, M., Ripoll, N., Dailly, E. (2003) Nicotinic receptors and Alzheimer’s disease. Curr Med Res Opin., 19: 169–177.

    PubMed  CAS  Google Scholar 

  • Butterfield, D.A., Drake, J., Pocernich, C., Castegna, A. (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med., 7: 548–554.

    PubMed  CAS  Google Scholar 

  • Capsoni, S., Giannotta, S., Cattaneo, A. (2002) Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci., 21: 15–28.

    PubMed  CAS  Google Scholar 

  • Carson, J.A. and Turner, A.J. (2002) Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J Neurochem., 81: 1–8.

    PubMed  CAS  Google Scholar 

  • Chauhan, V.P., Ray, I., Chauhan, A., Wisniewski, H.M. (1999) Binding of gelsolin, a secretory protein, to amyloid beta-protein. Biochem Biophys Res Commun., 258: 241–246.

    PubMed  CAS  Google Scholar 

  • Cherny, R.A., Atwood, C.S., Xilinas, M.E., et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 30: 665–676.

    PubMed  CAS  Google Scholar 

  • Choo-Smith, L.P. and Surewicz, W.K. (1997) The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett., 402: 95–98.

    PubMed  CAS  Google Scholar 

  • Courtney, C., Farrell, D., Gray, R., et al. (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet, 363: 2105–2115.

    PubMed  CAS  Google Scholar 

  • Courtney, C., Farrell, D., Gray, R., et al. (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trail. Lancet, 363: 2105–2115.

    PubMed  CAS  Google Scholar 

  • Crisby, M., Carlson, L.A. and Winblad, B. (2002) Statins in the prevention and treatment of Alzheimer disease. Alzheimer Dis Assoc Disord., 16: 131–136.

    PubMed  CAS  Google Scholar 

  • Deane, R., Yan, S.D., Submamaryan, R.K., et al. (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med., 9: 907–913.

    PubMed  CAS  Google Scholar 

  • De Strooper, B. (2003) Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 38: 9–12.

    PubMed  Google Scholar 

  • Dickson, D.W. (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurology, 56: 321–339.

    CAS  Google Scholar 

  • Distl, R., Meske, V., Ohm, T.G. (2001) Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol (Berl)., 101: 547–554.

    CAS  Google Scholar 

  • Dovey, H.F., John, V., Anderson, J.P., et al. (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem., 76: 173–181.

    PubMed  CAS  Google Scholar 

  • Edbauer, D., Winkler, E., Regula, J.T., et al. (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol., 5: 486–488.

    PubMed  CAS  Google Scholar 

  • Egan, M.F., Kojima, M., Callicott, J.H., et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112: 257–269.

    PubMed  CAS  Google Scholar 

  • Engelhart, M.J., Geerlings, M.I., Ruitenberg, A., et al. (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA., 287: 3223–3229.

    PubMed  CAS  Google Scholar 

  • Eriksdotter Jonhagen, M., Nordberg, A., Amberla, K., et al. (1998) Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord., 9: 246–257.

    PubMed  CAS  Google Scholar 

  • Eriksen, J.L., Sagi, S.A., Smith, T.E., et al. (2003) NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest., 112: 440–449.

    PubMed  CAS  Google Scholar 

  • Ertekin-Taner, N., Allen, M., Fadale, D., et al. (2004) Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum Mutat., 23: 334–342.

    PubMed  CAS  Google Scholar 

  • Farlow, M., Anand, R., Messina, Jr. J., et al. (2000) A 52-Week Study of the Efficacy of Rivastigmine in Patients with Mild to Moderately Severe Alzheimer’s Disease. European Neurology, 44: 236–241.

    PubMed  CAS  Google Scholar 

  • Farris, W., Mansourian, S., Leissring, M.A., et al. (2004) Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol., 164: 1425–1434.

    PubMed  CAS  Google Scholar 

  • Fassbender, K., Simons, M., Bergmann, C., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. PNAS USA., 98: 5856–5861.

    PubMed  CAS  Google Scholar 

  • Ferri, C.P., Prince, M., Brayne, C., et al. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet, 366: 2112–2117.

    PubMed  Google Scholar 

  • Fillit, H., Weinreb, H., Cholst, I., et al. (1986) Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer’s type. Psycho-neuroendocrinology, 11: 337–345.

    CAS  Google Scholar 

  • Fox, N.C., Black, R.S., Gilman, S., et al. (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology, 64: 1563–1572.

    PubMed  CAS  Google Scholar 

  • Frears, E.R., Stephens, D.J., Walters, C.E., et al. (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport, 10: 1699–1705.

    PubMed  CAS  Google Scholar 

  • Friedhoff, L.T., Cullen, E.I., Geoghagen, N.S. and Buxbaum, J.D. (2001). Treatment with controlled-release lovastatin decreases serum concentrations of human beta-amyloid (A beta) peptide. Int J Neuropsychopharmacol., 4: 127–130.

    PubMed  CAS  Google Scholar 

  • Geldmacher, D.S., Provenzano, G., McRae, T., et al. (2003) Donepezil is associated with delayed nursing home placement in patients with Alzheimer’s disease. Journal of the American Geriatrics Society 51: 937–944.

    PubMed  Google Scholar 

  • Gilman, S., Koller, M., Black, R.S., et al. (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64: 1553–1562.

    PubMed  CAS  Google Scholar 

  • Goedert, M. (1996) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Ann, N. Y. Acad Sci., 777: 121–131.

    CAS  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., et al. (1986) Abnormal phosphorylation of the microtubule associated protein t (tau) in Alzheimer cytoskeletoal pathology. PNAS USA., 83: 4913–4917.

    PubMed  CAS  Google Scholar 

  • Grundman, M., Capparelli, E. and Kim, H.T. (2003) A multicenter, randomized, placebo controlled, multiple-dose, safety and pharmacokinetic study of AIT-082 (Neotrofin) in mild Alzheimer’s disease patients. Life Sci., 73: 539–553.

    PubMed  CAS  Google Scholar 

  • Hardy, J. (2003) Alzheimer’s disease: genetic evidence point to a single pathogenesis. Ann. Neurol., 54: 143–144.

    PubMed  CAS  Google Scholar 

  • Hardy, J.A., Higgins, G.A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science., 256: 184–185.

    PubMed  CAS  Google Scholar 

  • Hebert, L.E., Scherr, P.A., Bienias, J.L., et al. (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol., 60: 1119–1122.

    PubMed  Google Scholar 

  • Ho, L., Qin, W., Pompl, P.N., et al. (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J., 18: 902–904.

    PubMed  CAS  Google Scholar 

  • Hoglund, K., Wiklund, O., Vanderstichele, H., et al. (2004) Plasma levels of beta-amyloid(1-40), beta-amyloid(1-42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Neurol., 61: 333–337.

    PubMed  Google Scholar 

  • Holmes, M., Maysinger, D., Foerster, A., et al. (2003) Neotrofin, a novel purine that induces NGF-dependent nociceptive nerve sprouting but not hyperalgesia in adult rat skin. Mol Cell Neurosci., 24: 568–580.

    PubMed  CAS  Google Scholar 

  • Hong, L., Turner., R.T., Koelsch, G., et al. (2002) Crystal structure of memapsin 2 (b-secretase) in complex with an inhibitor OM00-3. Biochemistry, 41: 10963–10967.

    PubMed  CAS  Google Scholar 

  • Hussain, I. (2004) The potential for BACE1 inhibitors in the treatment of Alzheimer’s disease. IDrugs, 7: 653–658.

    PubMed  CAS  Google Scholar 

  • Ibach, B., Haen, E. (2004) Acetylcholinesterase inhibition in Alzheimer’s Disease. Curr Pharm Des., 10: 231–251.

    PubMed  CAS  Google Scholar 

  • in t’ Veld, B.A., Ruitenberg, A., Hofman, A., et al. (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med., 345: 1515–1521.

    PubMed  CAS  Google Scholar 

  • Kawarabayashi, T., Younkin, L.H., Saido, T.C., et al. (2001) Age-dependent changes in brain , CSF and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci., 21: 372–381.

    PubMed  CAS  Google Scholar 

  • Kawarabayashi, T., Shoji, M., Younkin, L.H., et al. (2004) Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci., 24: 3801–3809.

    PubMed  CAS  Google Scholar 

  • Kopan, R. and Ilagan, M. (2004) γ-Secretase: proteosome of the membrane? Nature Reviews Molecular Cell Biology, 5: 499–504.

    PubMed  CAS  Google Scholar 

  • Kukull, W.A. and Ganguli, M. (2000) Epidemiology of dementia: concepts and overview. Neurol Clin., 18: 923–950.

    PubMed  CAS  Google Scholar 

  • Kumar, U. (2005) Alzheimer’s Disease: Current and Future treatments. In: Aging Interventions and Therapies (Ed.: Rattan, S.) Pages 329–354, World Scientific, Singapore.

    Google Scholar 

  • Lezoualc’h, F. and Robert, S.J. (2003) The serotonin 5-HT4 receptor and the amyloid precursor protein processing. Exp Gerontol., 38: 159–166.

    PubMed  CAS  Google Scholar 

  • Maelicke, A. (2000) Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dement Geriatr Cogn Disord., 11 Suppl 1: 11–18.

    Google Scholar 

  • Mandelkow, E.M., Mandelkow, E. (1998) Tau in Alzheimer’s disease. Trends Cell Biol., 8: 425–427.

    PubMed  CAS  Google Scholar 

  • Marks, M.J., Stitzel, J.A. and Collins, A.C. (1987) Influence of kinetics of nicotine administration on tolerance development and receptor levels. Pharmacol Biochem Behav., 27: 505–512.

    PubMed  CAS  Google Scholar 

  • Marr, R.A., Guan, H., Rockenstein, E., et al. (2004) Neprilysin regulates amyloid Beta peptide levels. J Mol Neurosci., 22: 5–11.

    PubMed  Google Scholar 

  • Maubach, K. (2003) GABA(A) receptor subtype selective cognition enhancers. Curr Drug Targets CNS Neurol Disord., 2: 233–239.

    PubMed  CAS  Google Scholar 

  • Mohs, R.C., Doody, R.S., Morris, J.C., et al. (2001) A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology, 57: 481–488.

    PubMed  CAS  Google Scholar 

  • Moore, A.H., O’Banion, M.K. (2000) Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Deliv Rev., 54: 1627–1656.

    Google Scholar 

  • Morgan, D., Gitter, B.D. (2004) Evidence supporting a role for anti-Abeta antibodies in the treatment of Alzheimer’s disease. Neurobiol Aging., 25: 605–608.

    PubMed  CAS  Google Scholar 

  • Mori, T., Paris, D., Town, T., et al. (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol., 60: 778–785.

    PubMed  CAS  Google Scholar 

  • Mudher, A., Lovestone, S. (2002) Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci., 25: 22–26.

    PubMed  CAS  Google Scholar 

  • Nicoll, J.A., Wilkinson, D., Holmes, C., et al. (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med., 9: 448–452.

    PubMed  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Kitazawa, M., et al. (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging., 24: 1063–1070.

    PubMed  CAS  Google Scholar 

  • Ohno, M., Sametsky, E., Younkin, N., et al. (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron, 41: 27–33.

    PubMed  CAS  Google Scholar 

  • Orgogozo, J.M., Gilman, S., Dartigues, J.F., et al. (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61: 46–54.

    PubMed  CAS  Google Scholar 

  • Palmer, G.C. (2001) Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targets, 2: 241–271.

    PubMed  CAS  Google Scholar 

  • Pangalos, M.N., Jacobsen, S.J. and Reinhart, P.H. (2005) Disease modifying strategies for the treatment of Alzheimer’s disease targeted at modulating levels of the beta-amyloid peptide. Biochemical Society Transactions, 33: 553–558.

    PubMed  CAS  Google Scholar 

  • Panisset, M., Gauthier, S., Moessler, H. and Windisch, M. (2002) Cerebrolysin in Alzheimer’s disease: a randomized, double-blind, placebo-controlled trial with a neurotrophic agent. J Neural Transm., 109: 1089–1104.

    PubMed  CAS  Google Scholar 

  • Parsons, C.G., Danysz, W., Quack, G. (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist–a review of preclinical data. Neuropharmacology, 38: 735–767.

    PubMed  CAS  Google Scholar 

  • Phiel, C.J., Wilson, C.A., Lee, V.M. and Klein, P.S. (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature, 423: 435–439.

    PubMed  CAS  Google Scholar 

  • Phinney, A.L., Horne, P., Yang, J., et al. (2003) Mouse models of Alzheimer’s disease: the long and filamentous road. Neurol Res., 25: 590–600.

    PubMed  CAS  Google Scholar 

  • Rapp, S.R., Espeland, M.A., Shumaker, S.A., et al. (2003) Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA., 289: 2663–2672.

    PubMed  CAS  Google Scholar 

  • Raskind, M.A., Peskind, E.R., Wessel, T. and Yuan, W. (2000) Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology, 54: 2261–2268.

    PubMed  CAS  Google Scholar 

  • Raskind, M.A., Peskind, E.R., Truyen, L., et al. (2004) The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Archives of neurology, 61: 252–256.

    PubMed  Google Scholar 

  • Raskind, M.A., Peskind, E.R., Truyen, L.B., et al. (2004) The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Arch Neurol., 61: 252–256.

    PubMed  Google Scholar 

  • Reavill, C. and Rogers, D.C. (2001) The therapeutic potential of 5-HT6 receptor antagonists. Curr Opin Investig Drugs., 2: 104–109.

    PubMed  CAS  Google Scholar 

  • Regland, B., Lehmann, W., Abedini, I., et al. (2001) Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord., 12: 408–414.

    PubMed  CAS  Google Scholar 

  • Reisberg, B., Doody, R., Stoffler, A., et al. (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med., 348: 1333–1341.

    PubMed  CAS  Google Scholar 

  • Ritchie, C.W., Bush, A.I., Mackinnon, A., et al. (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol., 60: 1685–1691.

    PubMed  Google Scholar 

  • Robinson, S.R., Bishop, G.M., Lee, H.G. and Munch, G. (2004) Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging, 25: 609–615.

    PubMed  CAS  Google Scholar 

  • Rockwood, K., Mintzer, J., Truyen, L., et al. (2001) Effects of a flexible galantamine dose in Alzheimer’s disease: a randomised, controlled trial. Journal of neurology, neurosurgery, and psychiatry, 71: 589–595.

    PubMed  CAS  Google Scholar 

  • Rogers, J., Kirby, L.C., Hempelman, S.R., et al. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology, 43: 1609–1611.

    PubMed  CAS  Google Scholar 

  • Rogers, S.L., Farlow, M.R., Doody, R.S., et al. (1998a) A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology. 50: 136–145.

    CAS  Google Scholar 

  • Rogers, S.L., Doody, R.S., Mohs, R.C., et al. (1998b) Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Archives of Internal Medicine, 158: 1021–1031.

    CAS  Google Scholar 

  • Rogers, S.L., Doody, R.S., Pratt, R.D., et al. (2000) Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: final analysis of a US multicentre open-label Study. European neuropsychopharmacology, 10: 195–203.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, T., Yan, S.F., Yan, S.D., et al. (2003) Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest., 111: 959–972.

    PubMed  CAS  Google Scholar 

  • Sano, M., Wilcock, G.K., van Baelen, B., et al. (2003) The effects of galantamine treatment on caregiver time in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 18: 942–950.

    PubMed  Google Scholar 

  • Schneider, L.S. and Tariot, P.N. (2003) Cognitive enhancers and treatments for Alzheimer’s disease. In Tasman, A., Kay, J. and Lieberman, J.A. (eds.) Psychiatry, 2nd edition John Wiley and Sons, London.

    Google Scholar 

  • Scott, J.A., Da Camara, C.C. and Early, J.E. (1999) Raloxifene: a selective estrogen receptor modulator. Am Fam Physician, 60: 1131–1139.

    PubMed  CAS  Google Scholar 

  • Shie, F.S., Jin, L.W., Cook, D.G., et al. (2002) Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport, 13: 455–459.

    PubMed  CAS  Google Scholar 

  • Siemers, E., Skinner, M., Dean, R.A., et al. (2005) Safety, Tolerability, and Changes in Amyloid beta Concentrations After Administration of a gamma-Secretase Inhibitor in Volunteers. Clinical Neuropharmacology, 28: 126–132.

    PubMed  CAS  Google Scholar 

  • Simons, M., Keller, P., Dichgans, J. and Schulz, J.B. (2001) Cholesterol and Alzheimer’s disease: is there a link? Neurology, 57: 1089–1093.

    PubMed  CAS  Google Scholar 

  • Solomon, P.R., Adams, F., Silver, A., et al. (2002) Ginkgo for memory enhancement: a randomized controlled trial. JAMA., 288: 835–840.

    PubMed  Google Scholar 

  • Soto, C., Saborio, G.P., Permanne, B. (2000) Inhibiting the conversion of soluble amyloid-beta peptide into abnormally folded amyloidogenic intermediates: relevance for Alzheimer’s disease therapy. Acta Neurol Scand Suppl., 176: 90–95.

    PubMed  CAS  Google Scholar 

  • Sparks, D.L., Sabbagh, M.N., Connor, D.J., et al. (2005) Atorvastatin therapy lowers circulating cholesterol but not free radical activity in advance of identifiable clinical benefit in the treatment of mild-to-moderate AD. Current Alzheimer Research, 2: 343–353.

    PubMed  CAS  Google Scholar 

  • Tanzi, R.E. and Bertram, L. (2001) New frontiers in Alzheimer’s disease genetics. Neuron, 32: 181–184.

    PubMed  CAS  Google Scholar 

  • Tariot, P.N., Solomon, P.R., Morris, J.C., et al. (2000) A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology, 54: 2269–2276.

    PubMed  CAS  Google Scholar 

  • Tariot, P.N., Loy, R., Ryan, J.M., et al. (2002) Mood stabilizers in Alzheimer’s disease: symptomatic and neuroprotective rationales. Adv Drug Deliv Rev., 54: 1567–1577.

    PubMed  CAS  Google Scholar 

  • Tariot, P.N., Farlow, M.R., Grossberg, G.T., et al. (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA., 291: 317–324.

    PubMed  CAS  Google Scholar 

  • van Duijn, C.M. and Hofman, A. (1991) Relation between nicotine intake and Alzheimer’s disease. BMJ., 302: 1491–1494.

    PubMed  Google Scholar 

  • Wilcock, G.K., Lilienfeld, S. and Gaens, E. (2000) Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. BMJ, 321: 1445–1449.

    PubMed  CAS  Google Scholar 

  • Wilcock, G.K., Birks, J., Whitehead, A., Evans, S.J. (2002) The effect of selegiline in the treatment of people with Alzheimer’s disease: a meta-analysis of published trials. Int J Geriatr Psychiatry., 17: 175–183.

    PubMed  CAS  Google Scholar 

  • Wilcock, G., Howe, I., Coles, H., et al. (2003) A long-term comparison of galantamine and donepezil in the treatment of Alzheimer’s disease. Drugs & aging, 20: 777–789.

    CAS  Google Scholar 

  • Wilkinson, D.G., Passmore, A.P., Bullock, R., et al. (2002) A multinational, randomised, 12-week, comparative study of donepezil and rivastigmine in patients with mild to moderate Alzheimer’s disease. International journal of clinical practice, 56: 441–446.

    PubMed  CAS  Google Scholar 

  • Wimo, A., Winblad, B., Shah, S.N., et al. (2004) Impact of donepezil treatment for Alzheimer’s disease on caregiver time. Current medical research and opinion, 20: 1221–1225.

    PubMed  CAS  Google Scholar 

  • Winblad, B., Engedal, K., Soininen, H., et al. (2001) A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology, 57: 489–495.

    PubMed  CAS  Google Scholar 

  • Yamada, K., Nitta, A., Hasegawa, T., et al. (1997) Orally active NGF synthesis stimulators: potential therapeutic agents in Alzheimer’s disease. Behav Brain Res., 83: 117–122.

    PubMed  CAS  Google Scholar 

  • Yan, S.D., Chen, X., Fu, J., et al. (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature, 382: 685–691.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., Su, Y., Li, B., et al. (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science, 302: 1215–1217.

    PubMed  CAS  Google Scholar 

  • Zlokovic, B.V. (2004) Clearing amyloid through the blood-brain barrier. J Neurochem., 89: 807–811.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kumar, U., Roland, A., Burbidge, S.A. (2006). Understanding and Treating Alzheimer’s Disease. In: Rattan, S.I., Kassem, M. (eds) Prevention and Treatment of Age-related Diseases. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5058-5_4

Download citation

Publish with us

Policies and ethics