Skip to main content

Metabolic Changes in Iron-Stressed Dicotyledonous Plants

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadía, J., López-Millán, A. F., Rombolà, A. and Abadía, A. (2002) Organic acids and Fe deficiency: a review, Plant Soil 241, 75–86.

    Article  Google Scholar 

  • Andaluz, S., López-Millán, A. F., Peleato, M. L., Abadía, J. and Abadía, A. (2002) Increases of phosphoenolpyruvate carboxylase activity in iron-deficient sugar beet roots: analysis of spatial localization and post-translational modification, Plant Soil 241, 43–48.

    Article  CAS  Google Scholar 

  • Bienfait, H. F., Lubberding, H. J., Heutink, P., Limdner, L., Visser, J., Kaptein, R. and Dijkstra, K. (1989) Rhizosphere acidification by iron deficient bean plants: the role of trace amounts of divalent metal ions, Plant Physiol. 90, 359–364.

    Article  CAS  PubMed  Google Scholar 

  • Chollet, R., Vidal, J. and O’Leary, M. H. (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants, Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 273- 298.

    Article  CAS  Google Scholar 

  • Connolly, E. L., Fett, J. P. and Guerinot, M. L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation, Plant Cell 14, 1347–1357.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, C. K., Fox, T. C., Garvin, D. F. and Kochian L. V. (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants, Plant Physiol. 116, 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D. D. (1973) Control of and by pH, Symp. Soc. Exp. Biol. 27, 513–520.

    CAS  PubMed  Google Scholar 

  • Dell’Orto, M., Santi, S., De Nisi, P., Cesco, S., Varanini, Z., Zocchi, G. and Pinton, R. (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity, J. Exp. Bot. 51, 695–701.

    Article  PubMed  Google Scholar 

  • Dell’Orto, M., Pirovano, L., Villalba, J. M., Gonzalez-Reyes, J. A. and Zocchi, G. (2002) Localization of the plasma membrane H+-ATPase in Fe-deficient cucumber roots by immunodetection, Plant Soil 241, 11–17.

    Article  Google Scholar 

  • De Nisi, P. and Zocchi, G. (2000) Phoephoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization, J. Exp. Bot. 51, 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  • De Nisi, P., Dell’Orto, M. and Zocchi G. (2002) Immunodetection of H+-ATPase and PEPC in roots of cucumber grown under Fe-deficiency, In 11th International Symposium on Iron Nutrition and Interactions in Plants, Udine, Italy, Abstract, p. 70.

    Google Scholar 

  • De Nisi, P., Chittò, A. and Zocchi G. (2004) Local and systemic signals in the regulation of responses to Fe-deficiency, In 12th International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, Abstract, p. 26.

    Google Scholar 

  • De Vos, C. R., Lubberding, H. J. and Bienfait, H. F. (1986) Rhizosphere acidification as a response to iron deficiency in bean plants, Plant Physiol. 81, 842–846.

    Article  PubMed  Google Scholar 

  • Eckhardt, U., Mas Marques, A. and Buckhout T. J. (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants, Plant Mol. Biol. 45, 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Eide, D. J., Broderius, M., Fett, J. and Guerinot, M. L. (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast, P. Natl. Acad. Sci. USA 93, 5624–5628.

    Article  CAS  Google Scholar 

  • Espen, L., Dell’Orto, M., De Nisi, P. and Zocchi, G. (2000) Metabolic responses in cucumber (Cucumis sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in vivo study, Planta 210, 985–992.

    Article  CAS  PubMed  Google Scholar 

  • Herbik, A., Giritch, A., Horstmann, C., Becker, R., Balzer, H.-J., Bäumlein, H. and Stephan, U. (1996) Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva, Plant Physiol. 111, 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Landsberg, E. Ch. (1986) Function of rhizodermal transfer cells in the Fe stress response mechanism of Capsicum annuum L, Plant Phisiol. 82, 511–517.

    Article  CAS  Google Scholar 

  • Landsberg, E. Ch. (1994) Transfer cell formation in sugar beet roots induced by latent Fe deficiency, Plant Soil 165, 197–205.

    Article  CAS  Google Scholar 

  • Li, L., Cheng, X. and Ling, H.-Q. (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato, Plant Mol. Biol. 54, 125–136.

    Article  PubMed  Google Scholar 

  • López-Millán, A. F., Morales, F., Andaluz, S., Gogorcena, Y., Abadía, A., de Las Rivas J and Abadía, J. (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use, Plant Physiol. 124, 885–897.

    Article  PubMed  Google Scholar 

  • Pascal, N. and Douce, R. (1993) Effect of iron deficiency on the respiration of sycamore (Acer pseudoplatanus L.) cells, Plant Physiol. 103, 1329–1338.

    CAS  PubMed  Google Scholar 

  • Pontiggia, A., De Nisi, P. and Zocchi, G. (2003) Effect of iron deficiency on RNA and protein synthesis in cucumber roots, J. Plant Nutr. 10–11, 2177–2186.

    Article  Google Scholar 

  • Rabotti, G. and Zocchi, G. (1994) Plasma membrane-bound H+-ATPase and reductase activities in Fe-deficient cucumber roots, Physiol. Plant. 90, 779–785.

    Article  CAS  Google Scholar 

  • Rabotti, G., De Nisi, P. and Zocchi, G. (1995) Metabolic implications in the biochemical responses to iron deficiency in cucumber (Cucumis sativus L.) roots, Plant Physiol. 107, 1195–1199.

    CAS  PubMed  Google Scholar 

  • Robinson, N. J., Procter, C. M., Connolly, E. L. and Guerinot, M. L. (1999) A ferric-chelate reductase for iron uptake from soils, Nature 397, 694–697.

    Article  CAS  PubMed  Google Scholar 

  • Römheld, V. and Marschner, H. (1986) Mobilization of iron in the rhizosphere of different plant species, Adv. Plant Nutr. 2, 155–204.

    Google Scholar 

  • Sakano, K. (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolism, Plant Cell Physiol. 39, 467–473.

    CAS  Google Scholar 

  • Schmidt, A. and Buckhout, T. J.(1997) The response of tomato roots(Lycopersicon esculentum Mill.) to iron deficiency stress: alterations in the pattern of protein synthesis, J. Exp. Bot. 48, 1909–1918.

    CAS  Google Scholar 

  • Schmidt, W. (1999) Mechanism and regulation of reduction-based iron uptake in plants, New Phytol. 141, 1–26.

    Article  CAS  Google Scholar 

  • Schmidt, W. and Schuck, C. (1996) Pyridine nucleotide pool size changes in iron-deficient Plantago lanceolata roots during reduction of external oxidants, Physiol. Plant. 98, 215–221.

    Article  CAS  Google Scholar 

  • Sijmons, P. C. and Bienfait, H. F. (1983) Source of electrons for extracellular Fe(III) reduction in iron-deficient bean plants, Physiol. Plant. 59, 409–415.

    Article  CAS  Google Scholar 

  • Sijmons, P. C., Van Den Briel, W. and Bienfait, H. F. (1984) Cytosolic NADPH is the electron donor for extracellular FeIII reduction in iron-deficient bean roots, Plant Physiol. 75, 219–221.

    Article  CAS  PubMed  Google Scholar 

  • Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T. J. (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis, Plant Physiol. 127, 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G. A., Briat, J.-F. and Curie, C. (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals, Plant Physiol. 132, 796–804.

    Article  CAS  PubMed  Google Scholar 

  • Waters, B. M., Blevins, D. G. and Eide, D. J. (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition, Plant Physiol. 129, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Yi, Y. and Guerinot, M. L. (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency, Plant J. 10, 835. 844.

    Google Scholar 

  • Zaharieva, T. B. and Abadía, J. (2003) Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots, Protoplasma 221, 269–275.

    CAS  PubMed  Google Scholar 

  • Zocchi, G. and Cocucci, S. M. (1990) Fe uptake mechanism in Fe-efficient cucumber roots. Plant Physiol. 92, 908–911.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Zocchi, G. (2006). Metabolic Changes in Iron-Stressed Dicotyledonous Plants. In: Barton, L.L., Abadia, J. (eds) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_18

Download citation

Publish with us

Policies and ethics