Skip to main content

Chlorophyll Catabolites and the Biochemistry of Chlorophyll Breakdown

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

Although chlorophyll synthesis in Spring and its degradation in Autumn are undoubtedly the most colorful manifestations of life on Earth, chlorophyll catabolism remained an enigma until about fifteen years ago. Contrary to expectation, chlorophyll breakdown in vascular plants rapidly leads to colorless degradation products and only fleetingly involves colored intermediates, which result from enzymatic oxidative opening of the chlorophyll macrocycle. This key oxygenolytic step in higher plants is rapidly followed by an enzymatic reduction to form short-lived fluorescent catabolites. These latter tetrapyrroles isomerize rapidly in an acid-catalyzed chemical step to colorless tetrapyrrolic catabolites. The colorless and non-fluorescent bilanones finally accumulate in the vacuoles of the degreened plant tissues. This chapter outlines the structural features of chlorophyll catabolites from natural sources and the biochemistry of chlorophyll breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–813

    Google Scholar 

  • Bachmann A, Fernández-López J, Ginsburg S, Thomas H, Bouwcamp JC, Solomos T and Matile P (1994) Stay-green genotypes of Phaseolus vulgaris L.: Chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol 126: 593–600

    CAS  Google Scholar 

  • Beale SI and Cornejo J (1991) Biosynthesis of phycobilins. 15,16- Dihydrobiliverdin IXα?is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J Biol Chem 266: 22341–22345

    PubMed  CAS  Google Scholar 

  • Beale SI and Weinstein JD (1991) Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In: Jordan, P M (ed) Biosynthesis of Tetrapyrroles, pp 155–235. Elsevier, Amsterdam

    Google Scholar 

  • Berghold J, Breuker K, Oberhuber M, Hörtensteiner S and Kräutler B (2002) Chlorophyll breakdown in spinach: On the structure of five nonfluorescent chlorophyll catabolites. Photosynth Research 74: 109–119

    CAS  Google Scholar 

  • Berghold J, Eichmüller C, Hörtensteiner S, Kräutler B (2004) Chlorophyll breadkown in tobacco: On the structure of two non- fluorescent chlorophyll catabolites. Chem Biodiv 1: 657–668

    CAS  Google Scholar 

  • Bortlik K-H, Peisker C and Matile P (1990) A novel type of chlorophyll catabolite in senescent barley leaves. J Plant Physiol 136: 161–165

    CAS  Google Scholar 

  • Brandis A, Vainstein A and Goldschmidt EE (1996) Distribution of chlorophyllase among components of chloroplast membranes in Citrus sinensis organs. Plant Physiol Biochem 34: 49–54

    CAS  Google Scholar 

  • Brown SB, Houghton JD and Hendry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls, pp 465–489. CRC Press, Boca Raton

    Google Scholar 

  • Curty C and Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42: 1531–1536

    CAS  Google Scholar 

  • Curty C and Engel N (1997) Chlorophyll catabolism: High stereoselectivity in the last step of the primary ring cleaving process. Plant Physiol Biochem 35: 707–711

    CAS  Google Scholar 

  • Curty C, Engel N and Gossauer A (1995) Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll. FEBS Lett 364: 41–44

    PubMed  CAS  Google Scholar 

  • Doi M, Shima S, Egashira T, Nakamura K and Okayama S (1997) New bile pigment excreted by a Chlamydomonas reinhardtii mutant: A possible breakdown catabolite of chlorophyll a. J Plant Physiol 150: 504–508

    CAS  Google Scholar 

  • Doi M, Inage T and Shioi Y (2001) Chlorophyll degradation in a Chlamydomonas reinhardtii mutant: An accumulation of pyropheophorbide a by anaerobiosis. Plant Cell Physiol 42: 469–474

    PubMed  CAS  Google Scholar 

  • Dunlap JC, Hastings JW and Shimomura O (1981) Dinoflagellate luciferin is structurally related to chlorophyll. FEBS Letters 135: 273–276

    CAS  Google Scholar 

  • Engel N, Jenny TA, Mooser V and Gossauer A (1991) Chlorophyll catabolism in Chlorella protothecoides. Isolation and structure elucidation of a red bilin derivative. FEBS Lett 293: 131–133

    PubMed  CAS  Google Scholar 

  • Engel N, Curty C and Gossauer A (1996) Chlorophyll catabolism in Chlorella protothecoides. 8. Facts and artifacts. Plant Physiol Biochem 34: 77–83

    CAS  Google Scholar 

  • Eschenmoser A (1988) Vitamin B12: Experiments concerning the origin of its molecular structure. Angew Chem 100: 5–40; Angew Chem Int Ed Engl 27: 5–40

    CAS  Google Scholar 

  • Falk H (1989) The Chemistry of Linear Oligopyrroles and Bile Pigments. Springer Verlag, Wien

    Google Scholar 

  • Folley P and Engel N (1999) Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 274: 21811–21816

    Google Scholar 

  • Frankenberg N, Mukougawa K, Kohchi T and Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxindependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13: 965–978

    PubMed  CAS  Google Scholar 

  • Ginsburg S and Matile P (1993) Identification of catabolites of chlorophyll porphyrin in senescent rape cotyledons. Plant Physiol 102: 521–527

    PubMed  CAS  Google Scholar 

  • Ginsburg S, Schellenberg M and Matile P (1994) Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol 105: 545–554

    PubMed  CAS  Google Scholar 

  • Gossauer A and Engel N (1996) Chlorophyll catabolism. Structures, mechanisms, conversions. J Photochem Photobiol B: Biol 32: 141–151

    CAS  Google Scholar 

  • Gray J, Janick-Bruckner D, Bruckner B, Close PS and Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130: 1894–1907

    PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF and Ausubel FM (1994) Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack K and Jones JDG (2001) Responses to plant pathogens. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochemistry and Molecular Biology of Plants, pp 1102–1156. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Hendry GAF, Houghton JD and Brown SB (1987) Chlorophyll degradation. A biological enigma. New Phytol 107: 255–302

    CAS  Google Scholar 

  • Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P and Hörtensteiner S (1996) How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 271: 27233–27236

    PubMed  CAS  Google Scholar 

  • Hörtensteiner S (1998) NCC malonyltransferase catalyses the final step of chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49: 953–956

    PubMed  Google Scholar 

  • Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 56: 330–347

    PubMed  Google Scholar 

  • Hörtensteiner S and Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53: 927–937

    PubMed  Google Scholar 

  • Hörtensteiner S and Kräutler B (2000) Chlorophyll breakdown in oilseed rape. Photosynth Res 64: 137–146

    PubMed  Google Scholar 

  • Hörtensteiner S, Vicentini F and Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: Enzymatic cleavage of pheophorbide a in vitro. New Phytol 129: 237–246

    Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P, Ongania K-H and Kräutler B (1998) The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273: 15335–15339

    PubMed  Google Scholar 

  • Hörtensteiner S, Rodoni S, Schellenberg M, Vicentini F, Nandi OI, Qiu Y-L and Matile P (2000) Evolution of chlorophyll degradation: The significance of RCC reductase. Plant Biol 2: 63–67

    Google Scholar 

  • Hynninen PH (1991) Chemistry of chlorophylls: Modifications. In: Scheer H (ed) Chlorophylls, pp 145–209. CRC Press, Boca Raton

    Google Scholar 

  • Ito H and Tanaka A (1996) Determination of the activity of chlorophyll b to chlorophyll a conversion during greening of etiolated cucumber cotyledons by using pyrochlorophyllide b. Plant Physiol Biochem 34: 35–40

    CAS  Google Scholar 

  • Ito H, Tanaka Y, Tsuji H and Tanaka A (1993) Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Arch Biochem Biophys 306: 148–151

    PubMed  CAS  Google Scholar 

  • Iturraspe J and Gossauer A (1992) A biomimetic partial synthesis of the red chlorophyll-a catabolite from Chlorella protothecoides. Tetrahedron 48: 6807–6812

    CAS  Google Scholar 

  • Iturraspe J, Engel N and Gossauer A (1994) Chlorophyll catabolism. Isolation and structure elucidation of chlorophyll b catabolites in Chlorella protothecoides. Phytochemistry 35: 1387–1390

    CAS  Google Scholar 

  • Iturraspe J, Moyano N and Frydman B (1995) A new 5-formylbilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 60: 6664–6665

    CAS  Google Scholar 

  • Jakob-Wilk D, Holland D, Goldschmidt EE, Riov J and Eyal Y (1999) Chlorophyll breakdown by chlorophyllase: Isolation and functional expression of the Chlase1 gene from ethylenetreated Citrus fruit and its regulation during development. Plant J 20: 653–661

    Google Scholar 

  • Kräutler B (2002) Unravelling chlorophyll catabolism in higher plants. Biochem Soc Trans 30: 625–630

    PubMed  Google Scholar 

  • Kräutler B (2003) Chlorophyll breakdown and chlorophyll catabolites. In: Kadish K M, Smith K M and Guilard R (eds) The Porphyrin Handbook, Vol. 11, pp. 183–209. Elsevier Science

    Google Scholar 

  • Kräutler B and Matile P (1999) Solving the riddle of chlorophyll breakdown. Acc Chem Res 32: 35–43

    Google Scholar 

  • Kräutler B, Jaun B, Bortlik K-H, Schellenberg M and Matile P (1991) On the enigma of chlorophyll degradation: The constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 30: 1315–1318

    Google Scholar 

  • Kräutler B, Jaun B, Amrein W, Bortlik K-H, Schellenberg M and Matile P (1992) Breakdown of chlorophyll: Constitution of a secoporphinoid chlorophyll catabolite isolated from senescent barley leaves. Plant Physiol Biochem 30: 333–346

    Google Scholar 

  • Kräutler B, Mühlecker W, Anderl M and Gerlach B (1997) Breakdown of chlorophyll: Partial synthesis of a putative intermediary catabolite. Helv Chim Acta 80: 1355–1362

    Google Scholar 

  • Kreuz K, Tommasini R and Martinoia E (1996) Old enzymes for a new job. Herbicide detoxification in plants. Plant Physiol 111: 349–353

    PubMed  CAS  Google Scholar 

  • Langmeier M, Ginsburg S and Matile P (1993) Chlorophyll breakdown in senescent leaves: Demonstration of Mg-dechelatase activity. Physiol Plant 89: 347–353

    CAS  Google Scholar 

  • Lippard SJ and Berg JM (1994) Oxygen-atom transfer reactions: Fe. In: Lippard SJ and Berg JM, Principles of Bioinorganic Chemistry, pp 302–318. University Science Books, Mill Valley

    Google Scholar 

  • Llewellyn CA, Mantoura RFC and Brereton G (1990) Products of chlorophyll photodegradation. 2. Structural identification. Photochem Photobiol 52: 1043–1047

    CAS  Google Scholar 

  • Losey FG and Engel N (2001) Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare L. J Biol Chem 276: 27233–27236

    Google Scholar 

  • Lu Y-P, Li Z-S, Drozdowicz Y-M, Hörtensteiner S, Martinoia E and Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: Functional comparisons with AtMRP1. Plant Cell 10: 267–282

    PubMed  CAS  Google Scholar 

  • Mach JM, Castillo AR, Hoogstraten R and Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98: 771–776

    PubMed  CAS  Google Scholar 

  • Makino A and Osmond B (1991) Effect of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96: 355–362

    PubMed  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Sánchez-Fernández R and Rea PA (2000) Vacuolar transport of secondary metabolites and xenobiotics. In: Robinson DG and Rogers JC (eds) Vacuolar Compartments. Annual Plant Reviews, Vol 5, pp 221–253. Sheffield Academic Press, She field

    Google Scholar 

  • Matile P (1987) Seneszenz bei Pflanzen und ihre Bedeutung für den Stickstoffhaushalt. Chimia 41: 376–381

    CAS  Google Scholar 

  • Matile P (1992) Chloroplast senescence. In: Baker NR and Thomas H (eds) Crop Photosynthesis: Spatial and Temporal Determinants, pp 413–440. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Matile P (1997) The vacuole and cell senescence. In: Callow JA (ed) Advances in Botanical Research, Vol 25, pp 87–112. Academic Press, New York

    Google Scholar 

  • Matile P and Schellenberg M (1996) The cleavage of pheophorbide a is located in the envelope of barley gerontoplasts. Plant Physiol Biochem 34: 55–59

    CAS  Google Scholar 

  • Matile P, Ginsburg S, Schellenberg M and Thomas H (1987) Catabolites of chlorophyll in senescent leaves. J Plant Physiol 129: 219–228

    CAS  Google Scholar 

  • Matile P, Ginsburg S, Schellenberg M and Thomas H (1988) Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells. Proc Natl Acad Sci USA 85: 9529–9532

    PubMed  CAS  Google Scholar 

  • Matile P, Schellenberg M and Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187: 230–235

    CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H and Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112: 1403–1409

    PubMed  CAS  Google Scholar 

  • Matile P, Schellenberg M and Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201: 96–99

    CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50: 67–95

    PubMed  CAS  Google Scholar 

  • McFeeters RF (1975) Substrate specificity of chlorophyllase. Plant Physiol 55: 377–381

    PubMed  CAS  Google Scholar 

  • Mendel G (1865) Versuche über Pflanzenhybriden. Verh Naturf Ver 4: 3–47

    Google Scholar 

  • Moss GP (1987) Nomenclature of Tetrapyrroles. Pure Appl Chem 59: 779–832

    Google Scholar 

  • Mühlecker W and Kräutler B (1996) Breakdown of chlorophyll: Constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34: 61–75

    Google Scholar 

  • Mühlecker W, Kräutler B, Ginsburg S and Matile P (1993) Breakdown of chlorophyll: The constitution of a secoporphinoid chlorophyll catabolite from senescent rape leaves. Helv Chim Acta 76: 2976–2980

    Google Scholar 

  • Mühlecker W, Ongania K-H, Kräutler B, Matile P and Hörtensteiner S (1997) Tracking down chlorophyll breakdown in plants: Elucidation of the constitution of a ‘ fluorescent’ chlorophyll catabolite. Angew Chem Int Ed Engl 36: 401–404

    Google Scholar 

  • Mühlecker W, Kräutler B, Moser D, Matile P and Hörtensteiner S (2000) Breakdown of chlorophyll: A fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 83: 278–286

    Google Scholar 

  • Müller T, Moser S, Ongania K-H, Hörtensteiner S and Kräutler B (2005) A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. ChemBioChem 7: 40–42

    Google Scholar 

  • Nakamura H, Musicki B, Kishi Y and Shimomura O (1988) Structure of the light emitter in krill (Euphausia pacifica) bioluminescence. J Am Chem Soc 110: 2683–2685

    CAS  Google Scholar 

  • Nakamura H, Kishi Y, Shimomura O, Morse D and Hastings JW (1989) Structure of dinoflagellate luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 111: 7607–7611

    CAS  Google Scholar 

  • Oberhuber M and Kräutler B (2002) Breakdown of chlorophyll: Electrochemical bilin reduction provides synthetic access to fluorescent chlorophyll catabolites. Chem Bio Chem 3: 104–107

    CAS  Google Scholar 

  • Oberhuber M, Berghold J, Mühlecker W, Hörtensteiner S and Kräutler B (2001) Chlorophyll breakdown—on a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84: 2615–2627

    CAS  Google Scholar 

  • Oberhuber M, Berghold J, Breuker K, Hörtensteiner S and Kräutler B (2003) Breakdown of chlorophyll: A nonenzymatic reaction accounts for the formation of the colorless ‘nonfluorescent’ chlorophyll catabolites. Proc. Natl Acad Sci USA 74: 6910–6915

    Google Scholar 

  • Ohtsuka T, Ito H and Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiol 113: 137–147

    PubMed  CAS  Google Scholar 

  • Oshio Y and Hase E (1969) Studies on red pigments excreted by cells of Chlorella protothecoides during the process of bleaching induced by glucose or acetate. I. Chemical properties of the red pigments. Plant Cell Physiol 10: 41–49

    CAS  Google Scholar 

  • Paulsen H, Finkenzeller B and Kühnlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816

    PubMed  CAS  Google Scholar 

  • Peisker C, Thomas H, Keller F and Matile P (1990) Radiolabelling of chlorophyll for studies on catabolism. J Plant Physiol 136: 544–549

    CAS  Google Scholar 

  • Peoples MB and Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen allocation. In: Noodén LD and Leopold AC (eds) Senescence and Aging in Plants, pp 181–217. Academic Press, San Diego

    Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder I and Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem 219: 671–679

    PubMed  CAS  Google Scholar 

  • Pružinská A, Tanner G, Anders I, Roca M and Hörtensteiner S (2003) Chlorophyll breakdown: Pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100: 15259–15264

    PubMed  Google Scholar 

  • Pružinskà A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania K-H, Kräutler B, Youn J-Y, Liljegren SJ and Hörtensteiner S (2005) Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139: 52–63

    PubMed  Google Scholar 

  • Rodoni S, Mühlecker W, Anderl M, Kräutler B, Moser D, Thomas H, Matile P and Hörtensteiner S (1997a) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115: 669–676

    CAS  Google Scholar 

  • Rodoni S, Vicentini F, Schellenberg M, Matile P and Hörtensteiner S (1997b) Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol 115: 677–682

    CAS  Google Scholar 

  • Rüdiger W (1997) Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 46: 1151–1167

    Google Scholar 

  • Schellenberg M and Matile P (1995) Association of components of the chlorophyll catabolic system with pigment-protein complexes from solubilized chloroplast membranes. J Plant Physiol 146: 604–608

    CAS  Google Scholar 

  • Schellenberg M, Matile P and Thomas H (1990) Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. J Plant Physiol 136: 564–568

    CAS  Google Scholar 

  • Schellenberg M, Matile P and Thomas H (1993) Production of a presumptive chlorophyll catabolite in vitro: Requirement for reduced ferredoxin. Planta 191: 417–420

    CAS  Google Scholar 

  • Scheumann V, Ito H, Tanaka A, Schoch S and Rüdiger W (1996) Substrate specificity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare). Eur J Biochem 242: 163–170

    PubMed  CAS  Google Scholar 

  • Scheumann V, Schoch S and Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209: 364–370

    PubMed  CAS  Google Scholar 

  • Schoch S, Scheer H, Schiff JA, Rüdiger W and Siegelman HW (1981) Pyropheophytin a accompanies pheophytin a in darkened light grown cells of Euglena. Z Naturforsch 36c: 827–833

    CAS  Google Scholar 

  • Shioi Y, Tatsumi Y and Shimokawa K (1991) Enzymatic degradation of chlorophyll in Chenopodium album. Plant Cell Physiol 32: 87–93

    CAS  Google Scholar 

  • Shioi Y, Tomita N, Tsuchiya T and Takamiya K (1996a) Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiol Biochem 34: 41–47

    CAS  Google Scholar 

  • Shioi Y, Watanabe K and Takamiya K (1996b) Enzymatic conversion of pheophorbide a to a precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 37: 1143–1149

    CAS  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126: 419–448

    CAS  Google Scholar 

  • Stoll A (1912) Über Chlorophyllase und die Chlorophyllide. Thesis, ETH Zürich

    Google Scholar 

  • Suzuki Y and Shioi Y (1999) Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 40: 909–915

    CAS  Google Scholar 

  • Takamiya K, Tsuchiya T and Ohta H (2000) Degradation pathway of chlorophyll in higher plants. What gene cloning has brought about. Trends Plant Sci 5: 426–431

    PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    PubMed  CAS  Google Scholar 

  • Thomas H (1987) Foliar senescence mutants and other genetic variants. In: Thomas H and Grierson D (eds) Developmental Mutants in Higher Plants, pp 245–265. Cambridge University Press, Cambridge

    Google Scholar 

  • Thomas H and Hilditch P (1987) Metabolism of thylakoid membrane proteins during foliar senescence. In: Thomson WW, Nothnagel EA and Huffaker RC (eds) Plant Senescence: Its Biochemistry and Physiology, pp 114–122. The American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Thomas H, Bortlik K-H, Rentsch D, Schellenberg M and Matile P (1989) Catabolism of chlorophyll in vivo: Significance of polar chlorophyll catabolites in a non-yellowing senescence mutant of Festuca pratensis Huds. New Phytol 111: 3–8

    CAS  Google Scholar 

  • Thomas H, Schellenberg M, Vicentini F and Matile P (1996) Gregor Mendel's green and yellow pea seeds. Bot Acta 109: 3–4

    Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M, Hörtensteiner S, Matile P, Amrhein N and Martinoia E (1998) An ABC transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13: 773–780

    PubMed  CAS  Google Scholar 

  • Topalov G and Kishi Y (2001) Chlorophyll catabolism leading to the skeleton of dinoflagellate and krill luciferins: Hypothesis and model studies. Angew Chem Int Ed Engl 40: 3892–3894

    PubMed  CAS  Google Scholar 

  • Trebitsh T, Goldschmidt EE and Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci USA 90: 9441–9445

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Ohta H, Masuda T, Mikami B, Kita N, Shioi Y and Takamiya K (1997) Purification and characterization of two isozymes of chlorophyllase from mature leaves of Chenopodium album. Plant Cell Physiol 38: 1026–1031

    CAS  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T and Takamiya K (1999) Cloning of chlorophyllase, key enzyme in chlorophyll degradation: Finding of a lipase motif and induction by methyl jasmonate. Proc Natl Acad Sci USA 96: 15362–15367

    PubMed  CAS  Google Scholar 

  • Vicentini F, Hörtensteiner S, Schellenberg M, Thomas H and Matile P (1995a) Chlorophyll breakdown in senescent leaves: Identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol 129: 247–252

    CAS  Google Scholar 

  • Vicentini F, Iten F and Matile P (1995b) Development of an assay for Mg-dechelatase of oilseed rape cotyledons, using chlorophyllin as the substrate. Physiol Plant 94: 57–63

    CAS  Google Scholar 

  • White MJ and Green BR (1987) Polypeptides belonging to each of the three major chlorophyll a+b protein complexes are present in a chlorophyll-b-less barley mutant. Eur J Biochem 165: 531–535

    PubMed  CAS  Google Scholar 

  • Woodward RB and Skaric VJ (1961) A new aspect of the chemistry of chlorins. J Am Chem Soc 83: 4676–4678

    CAS  Google Scholar 

  • Wüthrich KL, Bovet L, Hunziker PE, Donnison IS and Hörtensteiner S (2000) Molecular cloning, functional expression and characterization of RCC reductase involved in chlorophyll catabolism. Plant J 21: 189–198

    PubMed  Google Scholar 

  • Ziegler R, Blaheta A, Guha N and Schönegge B (1988) Enzymatic formation of pheophorbide and pyropheophorbide during chlorophyll degradation in a mutant of Chlorella fusca Shiria et Kraus. J Plant Physiol 132: 327–332

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kräutler, B., Hörtensteiner, S. (2006). Chlorophyll Catabolites and the Biochemistry of Chlorophyll Breakdown. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_17

Download citation

Publish with us

Policies and ethics