Skip to main content

Biosynthesis of 5-Aminolevulinic Acid

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

The universal tetrapyrrole precursor, 5-aminolevulinic acid (ALA) is formed by one of two alternative routes. Although these pathways are distinctly different with respect to biosynthetic precursors and intermediates, and the nature of the enzymes and the genes that encode them, there are similarities in their regulatory responses to biosynthetic end products and to environmental and metabolic signals in photosynthetic organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud MM, Jordan PM and Akhtar M (1974) Biosynthesis of 5-aminolevulinic acid: Involvement of a retention-reversion mechanism. J Chem Soc Chem Commun 1974: 643–644

    Google Scholar 

  • Avissar YJ and Beale SI (1989a) Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J Bacteriol 171: 2919–2924

    CAS  Google Scholar 

  • Avissar YJ and Beale SI (1989b) The aminotransferase step in the formation of δ-aminolevulinic acid from glutamate: Isolation of the enzyme from Chlorella vulgaris, requirement for pyridoxal phosphate, and inhibition by gabaculine and acetylenic GABA. Plant Physiol 89: S-51

    Google Scholar 

  • Avissar YJ and Beale SI (1990) Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 172: 1656–1659

    PubMed  CAS  Google Scholar 

  • Beale SI and Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol 53: 297–303

    PubMed  CAS  Google Scholar 

  • Beale SI and Foley T (1982) Induction of δ-aminolevulinic acid synthase and inhibition of heme synthesis in Euglena gracilis by N-methyl mesoporphyrin IX. Plant Physiol 69: 1331–1333 155 Chapter 11 Biosynthesis of 5-Aminolevulinic Acid

    PubMed  CAS  Google Scholar 

  • Beale SI, Foley T and Dzelzkalns V (1981) δ-Aminolevulinic acid synthase from Euglena gracilis. Proc Natl Acad Sci USA 78: 1666–1669

    PubMed  CAS  Google Scholar 

  • Berry-Lowe S (1987) The chloroplast glutamate tRNA gene required for δ-aminolevulinate synthesis. Carlsberg Res Commun 52: 197–210

    CAS  Google Scholar 

  • Biel SW, Wright MS and Biel AJ (1988) Cloning of the Rhodobacter capsulatus hemA gene. J Bacteriol 170: 4382–4384

    PubMed  CAS  Google Scholar 

  • Bolt EL, Kryszak L, Zeilstra-Ryalls J, Schoolingin-Jordan PM and Warren MJ (1999) Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur J Biochem 265: 290–299

    PubMed  CAS  Google Scholar 

  • Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9: 867–878

    PubMed  CAS  Google Scholar 

  • Bruyant P and Kannangara CG (1987) Biosynthesis of δ-aminolevulinate in greening barley leaves, VIII: Purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52: 99–109

    CAS  Google Scholar 

  • Bull AD, Pakes JF, Hoult RC, Rogers LJ and Smith AJ (1989) Tetrapyrrole biosynthesis in a gabaculin-tolerant mutant of Synechococcus 6301. Biochem Soc Trans 17: 911–912

    CAS  Google Scholar 

  • Burnham BF and Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroids. Biochem J 87: 462–472

    PubMed  CAS  Google Scholar 

  • Chang T-E, Wegmann B and Wang W-Y (1990) Purification and characterization of glutamyl-tRNA synthetase: An enzyme involved in chlorophyll biosynthesis. Plant Physiol 93: 1641–1649

    PubMed  CAS  Google Scholar 

  • Chen M-W, Jahn D, Schön A, O'Neill GP and Söll D (1990a) Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. J Biol Chem 265: 4054–4057

    CAS  Google Scholar 

  • Chen M-W, Jahn D, O'Neill GP and Söll D (1990b) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058–4063

    CAS  Google Scholar 

  • Clement-Metral JD (1979) Activation of ALA synthetase by reduced thioredoxin in Rhodopseudomonas spheroids Y. FEBS Lett 101: 116–120

    PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68

    CAS  Google Scholar 

  • Dzelzkalns V, Foley T and Beale SI (1982) δ-Aminolevulinic acid synthase of Euglena gracilis: Physical and kinetic properties. Arch Biochem Biophys 216: 196–203

    PubMed  CAS  Google Scholar 

  • Elliott T and Roth JR (1989) Heme-deficient mutants of Salmonella typhimurium. Two genes required for ALA synthesis. Mol Gen Genet 216: 303–314

    PubMed  CAS  Google Scholar 

  • Elliott T, Avissar YJ, Rhie G and Beale SI (1990) Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 172: 7071–7084

    PubMed  CAS  Google Scholar 

  • Evans WR, Fleischman, DE, Calvert HE, Pyati PV, Alter GM and Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1. Appl Environ Microbiol 56: 3445–3449

    PubMed  CAS  Google Scholar 

  • Falciatore A, Merendino L, Barneche F, Ceol M, Meskauskiene R, Apel K and Rochaix J-D (2005) The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in Chlamydomonas. Genes Devel 19: 176–187

    PubMed  CAS  Google Scholar 

  • Fanica-Gaignier M and Clement-Metral JD (1971) ATP inhibition of aminolevulinate (ALA) synthetase activity in Rhodopseudomonas spheroids Y. Biochem Biophys Res Commun 44: 192–198

    PubMed  CAS  Google Scholar 

  • Fanica-Gaignier M and Clement-Metral J (1973) 5-Aminolevulinic- acid synthetase of Rhodopseudomonas spheroids Y: kinetic mechanism and inhibition by ATP. Eur J Biochem 40: 19–24

    PubMed  CAS  Google Scholar 

  • Ferreira GC and Cheltsov AV (2002) Circular permutation of 5- aminolevulinate synthase as a tool to evaluate folding, structure and function. Cell Mol Biol 48: 11–16

    PubMed  CAS  Google Scholar 

  • Foley T, Dzelzkalns V and Beale SI (1982) δ-Aminolevulinic acid synthase of Euglena gracilis: Regulation of activity. Plant Physiol 70: 219–226

    PubMed  CAS  Google Scholar 

  • Friedmann HC, Duban ME, Valasinas A and Frydman B (1992) The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of δ-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185: 60–68

    PubMed  CAS  Google Scholar 

  • Gibson KD, Laver WG and Neuberger A (1958) Formation of δ-aminolaevulic acid in vitro from succinyl-coenzyme a and glycine. Biochem J 70: 71–81

    PubMed  CAS  Google Scholar 

  • Gough SP (1978) Light stimulated δ-aminolevulinate accumulation in levulinate treated barley seedlings. Carlsberg Res Commun 43: 497–508

    CAS  Google Scholar 

  • Gough SP and Kannangara CG (1979) Biosynthesis of δ-aminolevulinate in greening barley leaves. III. The formation of δ-aminolevulinate in tigrina mutants of barley. Carlsberg Res Commun 44: 403–416

    CAS  Google Scholar 

  • Gough SP, Kannangara CG and Bock K (1989) A new method for the synthesis of glutamate 1-semialdehyde: Characterization of its structure in solution by NMR spectroscopy. Carlsberg Res Commun 54: 99–108

    CAS  Google Scholar 

  • Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci USA 87: 4169–4173

    PubMed  CAS  Google Scholar 

  • Harashima K, Shiba T, Totsuka T, Simidu U and Taga N (1978) Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric Biol Chem 42: 1627–1628

    CAS  Google Scholar 

  • Harashima K, Hayasaki J, Ikari T and Shiba T (1980) O2-stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21: 1283–1294

    CAS  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate-1-semialdehyde aminomutase: An a 2-dimeric vitamin-B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94: 4866–4871

    PubMed  CAS  Google Scholar 

  • Herman CA, Im C and Beale SI (1999) Light-regulated expression of the Gsa gene encoding the chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase in carotenoid- deficient Chlamydomonas reinhardtii cells. Plant Mol Biol 39: 289–297

    PubMed  CAS  Google Scholar 

  • Hornberger U, Liebetanz R, Tichy H-V and Drews G (1990) Cloning and sequencing of the hemA gene of Rhodobacter Capsulatus and isolation of a δ-aminolevulinic acid-dependent mutant strain. Mol Gen Genet 221: 371–378

    PubMed  CAS  Google Scholar 

  • Hornberger U, Wieseler B and Drews G (1991) Oxygen-tension regulated expression of the hemA gene of Rhodobacter capsulatus. Arch Microbiol 156: 129–134

    CAS  Google Scholar 

  • Huang D-D and Wang W-Y (1986a) Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem 261: 13451–13455

    CAS  Google Scholar 

  • Huang D-D and Wang W-Y (1986b) Genetic control of chlorophyll biosynthesis: Regulation of delta aminolevulinate synthesis in Chlamydomonas. Mol Gen Genet 205: 217–220

    CAS  Google Scholar 

  • Huang D-D, Wang W-Y, Gough SP and Kannangara CG (1984) δ-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482–1484

    PubMed  CAS  Google Scholar 

  • Ilag LL, Kumar AM and Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265–275.

    PubMed  CAS  Google Scholar 

  • Im C and Beale SI (2000) Identification of possible signal transduction components mediating light induction of the Gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas reinhardtii. Planta 210: 999–1005

    PubMed  CAS  Google Scholar 

  • Im C, Matters GL and Beale SI (1996) Calcium and calmodulin are involved in blue-light induction of the gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8: 2245–2253

    PubMed  CAS  Google Scholar 

  • Inoue I, Oyama H and Tuboi S (1979) On the nature of the activating enzyme of the inactive form of δ-aminolevulinate synthetase in Rhodopseudomonas spheroids. J Biochem 86: 477–482

    PubMed  CAS  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314: 77–80

    PubMed  CAS  Google Scholar 

  • Jahn D, O'Neill GP, Verkamp E and Söll D (1992) Glutamate tRNA: Involvement in protein synthesis and aminolevulinate formation in Chlamydomonas reinhardtii. Plant Physiol Biochem 30: 245–253

    CAS  Google Scholar 

  • Jurgenson JE, Beale SI and Troxler RF (1976) Biosynthesis of δ-aminolevulinic acid in a unicellular Rhodophyte, Cyanidium caldarium. Biochem Biophys Res Commun 69: 149–157

    PubMed  CAS  Google Scholar 

  • Kannangara CG and Gough SP (1978) Biosynthesis of δ-aminolevulinate in greening barley leaves: Glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 43: 185–194

    CAS  Google Scholar 

  • Kannangara CG and Gough SP (1979) Biosynthesis of δ-aminolevulinate in greening barley leaves. II. Induction of enzyme synthesis by light. Carlsberg Res Commun 44: 11–20

    CAS  Google Scholar 

  • Kannangara CG, Gough SP and von Wettstein D (1978) The biosynthesis of δ-aminolevulinate and chlorophyll and its genetic regulation. In: Akoyunoglou G and Argyroudi-Akoyunoglou HJ (eds) Chloroplast Development, pp 147–160. Elsevier, Amsterdam

    Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP and Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49: 417–437

    CAS  Google Scholar 

  • Kikuchi G, Kumar A, Talmage P and Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233: 1214–1219

    PubMed  CAS  Google Scholar 

  • Krishnasamy S and Wang W-Y (1990) Purification of the second enzyme of chlorophyll biosynthesis from Chlamydomonas reinhardtii. Plant Physiol 93: S-62

    Google Scholar 

  • Kruse E, Grimm B, Beator J and Kloppstech K (1997) Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in greening barley. Planta 202: 235–241

    CAS  Google Scholar 

  • Kumar AM, Csankovszki G and Söll D (1996) A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol Biol 30: 419–426

    PubMed  CAS  Google Scholar 

  • Laghai A and Jordan PM (1976) A partial reaction of δ-aminolaevulinate synthetase from Rhodopseudomonas spheroids. Biochem Soc Trans 4: 52–53

    PubMed  CAS  Google Scholar 

  • Laghai A and Jordan PM (1977) An exchange reaction catalysed by δ-aminolaevulinate synthase from Rhodopseudomonas spheroids. Biochem Soc Trans 5: 299–300

    PubMed  CAS  Google Scholar 

  • Lascelles J (1960) The synthesis of enzymes concerned in bacteriochlorophyll formation in growing cultures of Rhodopseudomonas spheroids. J Gen Microbiol 23: 487–498

    PubMed  CAS  Google Scholar 

  • Lee KP, Kim C, Lee DW and Apel K (2003) TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 553: 119–124

    PubMed  CAS  Google Scholar 

  • Leong SA, Ditta GS and Helinski DR (1982) Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for δ-aminolevulinic acid synthetase from Rhizobium meliloti. J. Biol. Chem. 257: 8724–8730.

    PubMed  CAS  Google Scholar 

  • Li J-M, Brathwaite O, Cosloy SD and Russell CS (1989) 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171: 2547–2552

    PubMed  CAS  Google Scholar 

  • Luer C, Schauer S, Mobius K, Schulze J, Schubert WD, Heinz DW, Jahn D and Moser J (2005) Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1- aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis J Biol Chem 280: 18568–18572

    PubMed  Google Scholar 

  • Masuda R, Tanaka R, Shioi Y, Takamiya KI, Kannangara CG and Tsuji H (1994) Mechanism of benzyladenine-induced stimulation of the synthesis of 5-aminolevulinic acid in greening cucumber cotyledons: Benzyladenine increases levels of plastid tRNAGlu. Plant Cell Physiol 35: 183–188

    CAS  Google Scholar 

  • Masuda T, Ohta H, Shioi Y, Tsuji H and Takamiya KI (1995) Stimulation of glutamyl-tRNA reductase activity by benzyladenine in greening cucumber cotyledons. Plant Cell Physiol 36: 1237–1243

    CAS  Google Scholar 

  • Masuda T, Ohta H, Shioi Y and Takamiya K (1996) Light regulation of 5-aminolevulinic acid-synthesis system in Cucumis sativus: Light stimulates activity of glutamyl-tRNA reductase during greening. Plant Physiol Biochem 34: 11–16

    CAS  Google Scholar 

  • Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate-1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617–629

    PubMed  CAS  Google Scholar 

  • Matters GL and Beale SI (1995) Blue-light-regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109: 471–479

    PubMed  CAS  Google Scholar 

  • Mau Y-HL and Wang W-Y (1988) Biosynthesis of δ-aminolevulinic acid in Chlamydomonas reinhardtii. Study of the transamination mechanism using specifically labeled glutamate. Plant Physiol 86: 793–797

    PubMed  CAS  Google Scholar 

  • Mau Y-H, Zheng P, Krishnasamy S and Wang W-Y (1992) Light regulation of δ-aminolevulinic acid in Chlamydomonas. Plant Physiol 98: S-99

    Google Scholar 

  • Mayer SM and Beale SI (1990) Light regulation of δ-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol 94: 1365–1375

    PubMed  CAS  Google Scholar 

  • Mayer SM, Gawlita E, Avissar YJ, Anderson VE and Beale SI (1993) Intermolecular nitrogen transfer in the enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Plant Physiol 101: 1029–1038

    PubMed  CAS  Google Scholar 

  • Mayer SM, Rieble S and Beale SI (1994) Metal requirements of the enzymes catalyzing conversion of glutamate to δ-aminolevulinic acid in extracts of Chlorella vulgaris and Synechocystis sp. PCC 6803. Arch Biochem Biophys 312: 203–209

    PubMed  CAS  Google Scholar 

  • McCormac AC, Fischer A, Kumar AM, Söll D and Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25: 549–561

    PubMed  CAS  Google Scholar 

  • Mehta PK and Christen P (1994) Homology of 1-aminocyclopropane- 1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases. Biochem Biophys Res Commun 198: 138–143

    PubMed  CAS  Google Scholar 

  • Meller E and Harel E (1978) The pathway of 5-aminolevulinic acid synthesis in Chlorella vulgaris and in Fremyella diplosiphon. In: Akoyunoglou G and Argyroudi-Akoyunoglou JH (eds) Chloroplast Development, pp 51–57. Elsevier, Amsterdam

    Google Scholar 

  • Meller E, Harel E and Kannangara CG (1979) Conversion of glutamic-1-semialdehyde and 4,5-dioxovaleric acid to 5-aminolevulinic acid by cell-free preparations from greening maize leaves. Plant Physiol 63: S-98

    Google Scholar 

  • Meskauskiene R and Apel K (2002) Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27–30

    PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 12826–12831

    PubMed  CAS  Google Scholar 

  • Moser J, Lorenz S, Hubschwerlen C, Rompf A and Jahn D (1999) Methanopyrus kandlerii glutamyl-tRNA reductase. J Biol Chem 274: 30679–30685

    PubMed  CAS  Google Scholar 

  • Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D and Heinz DW (2001) V-shaped structure of glutamyl-tRNA reductase, and first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20: 6583–6590

    PubMed  CAS  Google Scholar 

  • Neidle EL and Kaplan S (1993a) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isoenzymes. J Bacteriol 175: 2292–2303

    CAS  Google Scholar 

  • Neidle EL and Kaplan S (1993b) 5-Aminolevulinic acid availability and control of spectral complex formation in HemA and HemT mutants of Rhodobacter sphaeroides. J Bacteriol 175: 2304–2313

    CAS  Google Scholar 

  • Nishimura Y, Shimadzu M and Iizuka H (1981) Bacteriochlorophyll formation in radiation-resistant Pseudomonas radiora. J Gen Appl Microbiol 27: 427–430

    CAS  Google Scholar 

  • Nogaj LA and Beale SI (2005) Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 280: 24301–24307

    PubMed  CAS  Google Scholar 

  • Nogaj LA, Srivastava A, van Lis R and Beale SI (2005) Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. Plant Physiol 139: 389–396

    PubMed  CAS  Google Scholar 

  • O'Neill GP and Söll D (1990) Expression of the Synechocystis sp. PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis. J Bacteriol 172: 6363–6371

    PubMed  Google Scholar 

  • O'Neill GP, Chen M-W and Söll D (1989) δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiol Lett 60: 255–260

    Google Scholar 

  • O'Neill GP, Schön A, Chow H, Chen MW, Kim Y-C and Söll D (1990) Sequence of tRNAGlu and its genes from the chloroplast genome of Chlamydomonas reinhardtii. Nuc Acids Res 18: 5893–5893

    Google Scholar 

  • Oh-hama T, Seto H, Otake N and Miyachi S (1982) 13C-NMR evidence for the pathway of chlorophyll biosynthesis in green algae. Biochem Biophys Res Commun 105: 647–652

    PubMed  CAS  Google Scholar 

  • Petricek M, Rutberg L, Schröder I and Hederstedt L (1990) Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 172: 2250–2258

    PubMed  CAS  Google Scholar 

  • Pontoppidan B and Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529–537

    PubMed  CAS  Google Scholar 

  • Porra RJ, Klein O and Wright PE (1983) The proof by 13C-NMR spectroscopy of the predominance of the C5 pathway over the Shemin pathway in chlorophyll biosynthesis in higher plants and the formation of the methyl ester group of chlorophyll from glycine. Eur J Biochem 130: 509–516

    PubMed  CAS  Google Scholar 

  • Randau, L, Schauer S, Ambrogelly A, Salazari JC, Moser J, Sekine S, Yokoyama S, Söll D and Jahn D (2004) tRNA recognition by glutamyl-tRNA reductase. J Biol Chem 279: 34931–34937

    PubMed  CAS  Google Scholar 

  • Rieble S and Beale SI (1988) Transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Synechocystis sp. PCC 6803 and other oxygenic prokaryotes. J Biol Chem 263: 8864–8871

    PubMed  CAS  Google Scholar 

  • Rieble S and Beale SI (1991a) Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266: 9740–9744

    CAS  Google Scholar 

  • Rieble S and Beale SI (1991b) Separation and partial characterization of enzymes catalyzing δ-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 289: 289–297

    CAS  Google Scholar 

  • Rieble S and Beale SI (1992) Structure and expression of a cyanobacterial ilvC gene encoding acetohydroxyacid isomeroreductase. J Bacteriol 174: 7910–7918

    PubMed  CAS  Google Scholar 

  • Rieble S, Ormerod JG and Beale SI (1989) Transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol 171: 3782–3787

    PubMed  CAS  Google Scholar 

  • Sandy JD, Davies RC and Neuberger A (1975) Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroids: A role for trisulphides. Biochem J 150: 245–257

    PubMed  CAS  Google Scholar 

  • Sangwan I and O'Brian MR (1993) Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol 102: 829–834

    PubMed  CAS  Google Scholar 

  • Sato K (1978) Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter rubber and Pseudomonas AM1. FEBS Lett 85: 207–210

    PubMed  CAS  Google Scholar 

  • Sato K, Ishida K, Shirai M and Shimizu S (1985) Occurrence and some properties of two types of δ-aminolevulinic acid synthase in a facultative methylotroph, Protaminobacter rubber. Agric Biol Chem 49: 3423–3428

    CAS  Google Scholar 

  • Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert W-D, Nakayashiki T, Murai M, Wall K, Thomann H-U, Hieinz DW, Inokuchi H, Söll D and Jahn D (2002) Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 277: 48658–48663

    Google Scholar 

  • Schneegurt MA and Beale SI (1988) Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate. Purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiol 86: 497–504

    PubMed  CAS  Google Scholar 

  • Schoenhaut DS and Curtis PJ (1986) Nucleotide sequence of mouse 5-aminolevulinic acid synthase cDNA and expression of its gene in hepatic and erythroid tissues. Gene 48: 55–63

    PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG and Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284

    PubMed  Google Scholar 

  • Schröder I, Hederstedt L, Kannangara CG and Gough SP (1992) Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem J 281: 843–850

    PubMed  Google Scholar 

  • Shioi Y and Doi M (1988) Control of bacteriochlorophyll accumulation by light in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh114. Arch Biochem Biophys 266: 470–477

    PubMed  CAS  Google Scholar 

  • Smith MA, Kannangara CG and Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: Anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31: 11249–11254

    PubMed  CAS  Google Scholar 

  • Srivastava A and Beale SI (2005) Glutamyl-tRNA Reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 187: 4444–4450

    PubMed  CAS  Google Scholar 

  • Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD and Beale SI (2005) The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-tRNA reductase: Structure of the gene and properties of the expressed enzyme. Plant Mol Biol 58: 643–658

    PubMed  CAS  Google Scholar 

  • Stange-Thomann N, Thomann H-U, LLoyd AJ, Lyman H and Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAGlu uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91: 7947–7951

    PubMed  CAS  Google Scholar 

  • Tai T-N, Moore MD and Kaplan S (1988) Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70: 139–151

    PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H and Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110: 1223–1230

    PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Tsuji H, Inokuchi H, Okada K and Tanaka A (1997) The third member of the hemA family encoding glutamyl-tRNA reductase is primarily expressed in roots in Hordeum vulgare. Photosynth Res 53: 161–171

    CAS  Google Scholar 

  • Tuboi S and Hayasaka S (1972) Control of δ-aminolevulinate synthetase activity in Rhodopseudomonas spheroids, II: Requirement of a disulfide compound for the conversion of the inactive form of Fraction I to the active form. Arch Biochem Biophys 150: 690–697

    PubMed  CAS  Google Scholar 

  • Ujwal ML, McCormac AC, Goulding A, Kumar AM, Söll D and Terry MJ (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: Expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Mol Biol 50: 83–91

    PubMed  CAS  Google Scholar 

  • Viale AA, Wider EA and Batlle AM del C (1987) Porphyrin biosynthesis in Rhodopseudomonas palustris, XII: δ-Aminolevulinate synthetase switch-off/on regulation. Int J Biochem 19: 379–383

    PubMed  CAS  Google Scholar 

  • Vothknecht UC, Kannangara CG and von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93: 9287–9291

    PubMed  CAS  Google Scholar 

  • Wang L-Y, Elliott M and Elliott T (1999) Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bcteriol 181: 1211–1219

    CAS  Google Scholar 

  • Wang W-Y, Huang D-D, Stachon D, Gough SP and Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74: 569–575

    PubMed  CAS  Google Scholar 

  • Weinstein JD and Beale SI (1983) Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem 258: 6799–6807

    PubMed  CAS  Google Scholar 

  • Weinstein JD and Beale SI (1985) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys 237: 454–464

    PubMed  CAS  Google Scholar 

  • Weinstein JD, Mayer SM and Beale SI (1986) RNA is required for enzymatic conversion of glutamate to δ-aminolevulinic acid by algal extracts. In: Akoyunoglou G and Senger H (eds) Regulation of Chloroplast Development, pp 43–48. Liss, New York

    Google Scholar 

  • Weinstein JD, Mayer SM and Beale SI (1987) Formation of δ-aminolevulinic acid from glutamic acid in algal extracts. Separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 244–250

    PubMed  CAS  Google Scholar 

  • Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM and Beale SI (1993) Heme inhibition of δ-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101: 657–665

    PubMed  CAS  Google Scholar 

  • Willows RD, Kannangara CG and Pontoppidan B (1995) Nucleotides of tRNA (Glu) involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA reductase. Biochim Biophys Acta 1263: 228–234

    PubMed  Google Scholar 

  • Yang D, Oyaizu Y, Olsen H and Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447

    PubMed  CAS  Google Scholar 

  • Yubisui T and Yoneyama Y (1972) δ-Aminolevulinic acid synthetase of Rhodopseudomonas spheroids: purification and properties of the enzyme. Arch Biochem Biophys 150: 77–85

    PubMed  CAS  Google Scholar 

  • Zaman Z, Jordan PM and Akhtar M (1973) Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction. Biochem J 135: 257–263

    PubMed  CAS  Google Scholar 

  • Zavgorodnyaya A, Papenbrock J and Grimm B (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J 12: 169–178

    PubMed  CAS  Google Scholar 

  • Zeilstra-Ryalls JH and Kaplan S (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: The role of the fnrL gene. J Bacteriol 177: 6422–6431

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Beale, S.I. (2006). Biosynthesis of 5-Aminolevulinic Acid. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_11

Download citation

Publish with us

Policies and ethics