Skip to main content

Discrete Virial Theorem

  • Conference paper
  • 520 Accesses

Abstract

We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon— Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V. I.: 1989, Mathematical Methods of Classical Mechanics, 2nd ed. Springer, New York.

    Google Scholar 

  • Atkins, P. W.: 1983, Molecular Quantum Mechanics, 2nd ed. Oxford.

    Google Scholar 

  • Binney, J. and Tremaine, S.: 1987, Galactic Dynamics, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Birkhoff, G.:1931, ‘Proof of the Ergodic Theorem’, Proc. Nat. Acad. Sci. USA 17, 656.

    Google Scholar 

  • Blümel, R. and Reinhardt, W. P.: 1997, Chaos in Atomic Physics, Cambridge.

    Google Scholar 

  • Clausius, R. J. E.: 1850,‘Über die Bewegende Kraft der Wärme’, Ann. der Physik und Chemie 79, 368.

    Article  ADS  Google Scholar 

  • Contopoulos, G. and Voglis, N.:1977, ‘A Fast Method for Distinquishing Between Order and Chaotic Orbits’, Astron. Astrophys. 317, 73.

    ADS  Google Scholar 

  • Dragt, A. J.: 1979, ‘A Method of Transfer Maps for Linear and Nonlinear Beam Elements’, IEEE Trans. Nucl. Sci. NS-26, 601.

    Google Scholar 

  • Dullin, H. R. and Meiss, J. D.: 2000, ‘Generalized Hnon Maps: the Cubic Polynomial Diffeomorphisms of the Plane’,Physica D143, 265.

    ADS  MathSciNet  Google Scholar 

  • Dumas, H. S. and Laskar, J.: 1993, ‘Global Dynamics and Long-time Stability in Hamiltonian Systems via Numerical Frequency Analysis’,Phys. Rev. Lett. 70, 2975.

    Article  ADS  Google Scholar 

  • Froeschlé, C.: 1984, ‘The Lyapunov Exponents — Applications to Celestial Mechanics’, Celest. Mech. 34, 95.

    Article  ADS  MATH  Google Scholar 

  • Goldstein, H., Poole, C. and Safko, J.: 1989, Classical Mechanics, 3rd ed. Addison-Wesley, New York.

    Google Scholar 

  • Gottwald, G. A. and Melbourne, I.: 2004, ‘A New Test for Chaos in Deterministic Systems’, Proc. Roy. Soc. 460A, 603.

    Article  ADS  MathSciNet  Google Scholar 

  • Hénon, M. and Heiles, C.: 1964,‘The Applicability of the Third Integral of Motion: Some Numerical Experiments’,Astron. J. 69, 73.

    Article  ADS  Google Scholar 

  • Hénon, M.: 1969, ‘Numerical Study of Quadratic Area-Preserving Mappings’, Q. Appl. Math. 27, 291.

    MATH  Google Scholar 

  • Howard, J. E., Lichtenberg, A. J. and Lieberman, M. A.: 1986, ‘Four-Dimensional Mapping Model for Two-Frequency ECRH’, Physica 20D, 259.

    ADS  MathSciNet  Google Scholar 

  • Howard, J. E.: 1999, ‘Stability of Relative Equilibria in Arbitrary Axisymmetric Gravitational and Magnetic Fields.’, Celest. Mech. Dyn. Astron. 74, 19.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Howard, J. E. and Dullin, H. R.: 2001, ‘Spectral Stability of Natural Maps’, Phys. Lett. A88, 225.

    Google Scholar 

  • Laskar, J., Froeschlé, C. and Celletti, A.: 1992, ‘The Measure of Chaos by the Numerical Analysis of the Fundamental Frequencies. Application to the Standard Mapping’, Physica D56, 253.

    ADS  Google Scholar 

  • Laskar, J.: 1993, ‘Frequency Analysis for Multi-dimensional Systems. Global Dynamics and Diffusion’, Physica D67, 257.

    ADS  MathSciNet  Google Scholar 

  • Lega, E. and Froeschlé, C.: 1997, ‘Fast Lyapunov Indicators. Comparison with other Chaos Indicators. Application to Two and Four Dimensional Maps’, In: R. Dvorak and J. Henrard, (eds.), The Dynamical Behavior of our Planetary System, Kluwer, Dordrecht.

    Google Scholar 

  • Lichtenberg, A. J. and Lieberman, M. A.: 1992 Regular and Chaotic Dynamics, 2nd ed. Springer, New York.

    MATH  Google Scholar 

  • Meiss, J. D.: 1994, ‘Transient Measures in The Standard Map’, Physica D74, 254.

    ADS  MathSciNet  Google Scholar 

  • Murray, C. D. and Dermott, S. F.: 1999, Solar System Dynamics, Cambridge.

    Google Scholar 

  • Parker, E. N.: 1954, ‘Tensor Virial Equations’, Phys. Rev. 96, 1686.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pathria, R. K.: 1996, Statistical Mechanics, Butterworth and Heineman, Oxford.

    MATH  Google Scholar 

  • Robinson, C.: 1998, Dynamical Systems, CRC Press, New York.

    Google Scholar 

  • Sándor, Zs., Erdi, B. and Efthymiopoulos, C.: 2000, ‘The Phase Space Structure Around L4 in the Restricted Three-Body Problem’, Celest. Mech. Dynam. Astron. 78, 113.

    Article  ADS  MATH  Google Scholar 

  • Shafranov, V. D.: 1966, Reviews of Plasma Physics, Consultants Bureau, New York.

    Google Scholar 

  • Skokos, Ch.: 2001, ‘Alignment Indices: A New, Simple Method for Determining the Ordered or Chaotic Nature of Orbits’, J. Phys. A34, 10029.

    ADS  MathSciNet  Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, J. A.: 1985, ‘Determining Lyapunov Exponents from a Time Series’, Physica 16D, 285.

    ADS  MathSciNet  Google Scholar 

  • Zaslavskii, G. M., Sagdeev, R. Z., Usikov, D. A., Chernikov, A. A. and Sagdeev, A. R.: 1992, Chaos and Quasi-Regular Patterns, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Dvorak Sylvio Ferraz-Mello

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Howard, J.E. (2005). Discrete Virial Theorem. In: Dvorak, R., Ferraz-Mello, S. (eds) A Comparison of the Dynamical Evolution of Planetary Systems. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4466-6_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4466-6_12

  • Received:

  • Revised:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4218-8

  • Online ISBN: 978-1-4020-4466-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics