Skip to main content

Energy Scavenging in Support of Ambient Intelligence: Techniques, Challenges, and Future Directions

  • Chapter
AmIware Hardware Technology Drivers of Ambient Intelligence

Part of the book series: Philips Research ((PRBS,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabaey, J., Ammer, J., Karalar, T., Li, S., Otis, B., Sheets, M. and Tuan, T., 2002, PicoRadios for wireless sensor networks: The next challenge in ultralow-power design, Proceedings of the International Solid-State Circuits Conference, San Francisco, CA, February 3-7, 2002.

    Google Scholar 

  2. Warneke, B., Atwood, B. and Pister, K. S. J., 2001, Smart dust mote forerunners, Fourteenth Annual International Conference on Micro-electromechanical Systems (MEMS 2001), Interlaken, Switzerland, January 21-25, 2001.

    Google Scholar 

  3. Hill, J. and Culler, D., 2002, Mica: A wireless platform for deeply embedded networks, IEEE Micro, 22(6), 12-24.

    Article  Google Scholar 

  4. Otis, B. and Rabaey, J., 2002, A 300 mW 1.9 GHz oscillator utilizing micromachined resonators. IEEE Proceedings of the 28th ESSCIRC, 28, September 2002.

    Google Scholar 

  5. www.dust-inc.com, 2004.

  6. www.xbow.com, 2004.

  7. www.xsilogy.com, 2004.

  8. www.ember.com, 2004.

  9. www.millenial.net, 2004.

  10. Roundy, S., Wright, P.K. and Rabaey, J., Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations, Kluwer Academic Press, 2004.

    Google Scholar 

  11. Kang, S., Lee, S.-J.J. and Prinz, F. B., 2001, Size does matter: The pros and cons of miniaturization. ABB Review, 2, 54-62.

    Google Scholar 

  12. Li, H. and Lal, M., 2002, Self-reciprocating radio-isotope powered cantilever, Journal of Applied Physics, 92(2), 1122-1127.

    Article  Google Scholar 

  13. Kordesh, K. and Simader, G., 2001, Fuel cells and their applications. VCH Publishers, New York.

    Google Scholar 

  14. Holloday, J. D., Jones, E. O., Phelps, M. and Hu, J., 2002, Microfuel processor for use in a miniature power supply, Journal of Power Sources, 108,21-27.

    Article  Google Scholar 

  15. Strasser, M., et al., 2002, Sens. Act. A, 97-98C, 528-535.

    Google Scholar 

  16. Pescovitz, 2002, The power of small tech, Smalltimes, 2(1).

    Google Scholar 

  17. Stordeur, M. and Stark, I., 1997, Low power thermoelectric generator—Self-sufficient energy supply for micro systems, 16th Int. Conf. on Therm, pp. 575-577.

    Google Scholar 

  18. Shenck, N. S. and Paradiso, J. A., 2001, Energy scavenging with shoe-mounted piezoelectrics, IEEE Micro, 21, 30-41.

    Article  Google Scholar 

  19. Randall, J. F., On ambient energy sources for powering indoor electronic devices Ph.D. thesis Ecole Polytechnique Federale de Lausanne, Switzerland, May 2003.

    Google Scholar 

  20. Federspiel, C. C. and Chen, J., 2003, Air-powered sensor. Proceedings of IEEE Sensors 2003, Toronto, October 22-24, 2003.

    Google Scholar 

  21. Shearwood, C. and Yates, R. B., 1997, Development of an electromagnetic micro-generator, Electronics Letters 33(22), 1883-1884. (IEEE, 23 October 1997)

    Article  Google Scholar 

  22. Amirtharajah, R. and Chandrakasan, A. P., Self-powered signal processing using vibration-based power generation, IEEE JSSC, 33(5), 687-695.

    Google Scholar 

  23. El-hami, M., Glynne-Jones, P., White, N. M., Hill, M., Beeby, S., James, E., Brown, A. D. and Ross, J. N., 2001, Design and fabrication of a new vibration-based electromechanical power generator, Sensors and Actuators A (physical) 92, 335-342.

    Article  Google Scholar 

  24. Ching, N. N. H., Wong, H.Y., Li, W. J., Leong, P. H. W. and Wen, Z., 2002, A laser-micromachined multi-modal resonating power transducer for wireless sensing systems, Sensors and Actuators A (physical) 97-98, 685-690.

    Article  Google Scholar 

  25. Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A. P. and Lang, J. H., 2001, Vibration-to-electric energy conversion, IEEE Trans. VLSI Syst., 9, 64-76.

    Article  Google Scholar 

  26. Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara, T. and Yano, K., 2003, Electric-energy generation using variable-capacitive resonator for power-free LSI: Efficiency analysis and fundamental experiment, ISLPED’03, August 25-27, 2003, Seoul Korea.

    Google Scholar 

  27. Mitcheson, P. D., Green, T. C., Yeatman, E. M. and Holmes, A. S., 2004, Architectures for vibration-driven micropower generators, Journal of Microelectromechanical Systems, 13(3), 1-12.

    Article  Google Scholar 

  28. Glynne-Jones, P., Beeby, S.P., James, E.P. and White, N.M., 2001, The modelling of a piezoelectric vibration powered generator for Microsystems, Transducers ’01/Eurosensors XV, Munich, Germany, June 10-14, 2001.

    Google Scholar 

  29. Ottman, G. K., Hofmann, H. F. and Lesieutre, G. A., 2003, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode, IEEE Trans on Power Elect, 18(2), 696-703.

    Article  Google Scholar 

  30. Roundy, S. and Wright, P.K., 2004, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures, 13, 1131-1142.

    Article  Google Scholar 

  31. Otis, B. and Rabaey, J., 2002, A 300 mW 1.9 GHz oscillator utilizing micromachined resonators, IEEE Proceedings of the 28th ESSCIRC, 28, September 2002.

    Google Scholar 

  32. Adams, S.G., Bertsch, F.M., Shaw, K.A., Hartwell, P.G., Moon, F.C. and MacDonald, N.C., 1998, Capacitance based tunable resonators, J. Micromech. Microeng, 8, 15-23.

    Article  Google Scholar 

  33. Roundy, S., Toward self-tuning adaptive vibration based micro-generators, Smart Structures, Devices, and Systems II, 5649, 373-384, 2004.

    Google Scholar 

  34. Lesieutre, G. A. and Davis, C. L., Can a coupling coefficient of a piezoelectric device be higher than those of its active material?, Journal of Intelligent Material Systems and Structures, 8, 859-867.

    Google Scholar 

  35. Structure and method for fabricating semiconductor structures and polarization modulator devices utilizing the formation of a compliant substrate, US Patent 6,714,768, to Motorola, Inc., Patent and Trademark Office, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Roundy, S. et al. (2006). Energy Scavenging in Support of Ambient Intelligence: Techniques, Challenges, and Future Directions. In: Mukherjee, S., Aarts, R.M., Roovers, R., Widdershoven, F., Ouwerkerk, M. (eds) AmIware Hardware Technology Drivers of Ambient Intelligence. Philips Research, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4198-5_14

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4198-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4197-6

  • Online ISBN: 978-1-4020-4198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics