Skip to main content

Saline Tolerance Physiology In Grasses

  • Conference paper
Book cover Ecophysiology of High Salinity Tolerant Plants

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 40))

Salinization of agricultural lands is accelerating, with over 1 Mha of irrigated lands deteriorating to non-productivity each year (Hamdy, 1996; Choukr-Allah, 1996). Currently from 100 Mha to 1000 Mha of irrigated land is salt-affected due to human activity (Szabolcs, 1989; Oldeman et al., 1991). Though much of this land is currently too saline for conventional agriculture, it has the potential for growing salt tolerant forages, grasses (Poaceae) playing a dominant role (Ghassemi & Jakeman, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerson, R.C.&Youngner, V.B. 1975. Responses of bermudagrass to salinity. Agronomy Journal 67: 678–681.

    CAS  Google Scholar 

  • Albert, R.&Popp, M. 1977. Chemical composition of halopytes from the Neusiedler Lake region in Austria. Oecologia 27: 157–170.

    Article  Google Scholar 

  • Amarasinghe, V.&Watson, L. 1988. Comparative ultrastructure of microhairs in grasses. Botanical Journal Linnean Society 98: 303–319.

    Article  Google Scholar 

  • Amarasinghe, V.&Watson, L. 1989. Variation in salt secretory activity of microhairs in grasses. Australian Journal Plant Physiology 16: 219–229.

    Google Scholar 

  • Aronson, J.A. 1989. Haloph: A Data Base of Salt Tolerant Plants of the World. Tucson, Arizona: Office of Arid Land Studies, University of Arizona. 68–70 pp.

    Google Scholar 

  • Arriaga, M.O. 1992. Salt glands in flowering culms of Eriochloa species (Poaceae). Bothalia 22: 111–117.

    Google Scholar 

  • Aspinall, D.&Paleg, L.G. 1981. Proline accumulation: Physiological aspects. In: L.G Paleg&D. Aspinall (Eds.), Physiology and Biochemistry of Drought Resistance in Plants. Sydney, Australia: Academic Press. 205–241 pp.

    Google Scholar 

  • Bernstein, L.&Hayward, H.E. 1958. Physiology of salt tolerance. Annual Review Plant Physiology 9: 25–46.

    Article  CAS  Google Scholar 

  • Bhatti, A.S., Steinert, S., Sarwar, G., Hilpert, A.&Jeschke, W.D. 1993. Ion distribution in relation to leaf age inLeptochloa fusca(L.) Kunth. (Kallar grass). I.K, Na, Ca and Mg. New Phytologist 123: 539–545.

    Article  CAS  Google Scholar 

  • Blits, K.C.&Gallagher, J.L. 1991. Morphological and physiological responses to increased salinity in marsh and dune ecotypes ofSporoblus virginicus(L.) Kunth. Oecologia 87: 330–335.

    Article  Google Scholar 

  • Butler, J.D., Fults, J.L.,&Sanks, G.D. 1974. Review of grasses for saline and alkali areas. International Turfgrass Research Journal 2: 551–556.

    Google Scholar 

  • Carrow, R.N.&Duncan, R.R. 1998. Salt-Affected Turfgrass Sites—Assessment and Management. Chelsea, Michigan:Ann Arbor Press. 83–99 pp.

    Google Scholar 

  • Choukr-Allah, R. 1996. The potential of halophytes in the development and rehabilitation of arid and semi-arid zones. In: R. Choukr-Allah, C.V. Malcolm,&A. Hamdy, (Eds.), Halophytes and Biosaline Agriculture. New York, New York:. Marcel Dekker. 3–13 pp.

    Google Scholar 

  • Chlorideayton, W.D.&Renvoize, S.A. 1986. Genera Graminum, Grasses of the World. London, Great Britian: HMSO Books.

    Google Scholar 

  • Colmer, T.D., Epstein, E.&Dvorak, J. 1995. Differential solute regulation in leaf blades of various ages in salt- sensitive wheat and a salt-tolerant wheat XLophopyrum elongatum(Host) A. Löve amphiploid. Plant Physiology 108: 1715–1724.

    PubMed  CAS  Google Scholar 

  • Daines, R.J.&Gould, A.R. 1985. The cellular basis of salt tolerance studied with tissue cultures of the halophytic grassDistichlis spicata. Journal of Plant Physiology 119: 269–280.

    CAS  Google Scholar 

  • Dudeck, A.E., Singh, S., Giordano, C.E., Nell, T.A.&McConnell, D.B. 1983. Effects of sodium chloride onCynodonturfgrasses. Agronomy Journal 75: 927–930.

    Google Scholar 

  • Dudeck, A.E.&Peacock, C.H. 1993. Salinity effects on growth and nutrient uptake of selected warm-season turf. International Turfgrass Society Research Journal 7: 680–686

    Google Scholar 

  • Donovan, L.A.&Gallagher, J.L. 1985. Morphological responses of a marsh grass, Sporobolus virginicus (L.) Kunth., to saline and anaerobic stresses. Wetlands 5: 1–13.

    Article  Google Scholar 

  • Fahn, A. 1988. Secretory tissues in vascular plants. New Phytologist 108: 229–257.

    Article  Google Scholar 

  • Flowers. T.J. 1985. Physiology of halophytes. Plant Soil 89: 41–56.

    Article  CAS  Google Scholar 

  • Francois, L.E. 1988. Salinity effects on three turf bermudagrasses. HortScience 23: 706–708.

    Google Scholar 

  • Garbarino, J.&Dupont, F.M. 1988. Na Chloride induces a salinity induces K+/Na+ antiport in tonoplast vesi hloridees from barley roots. Plant Physiology 86: 231–236.

    PubMed  CAS  Google Scholar 

  • Ghassemi, F., Jakeman, A.J.&Nix, H.A. 1995. Salinisation of Land and and Water Resources. Wallingford Oxon, K: CAB International. 291–335 pp.

    Google Scholar 

  • Gorham, J., Wyn Jones, R.G.&McDonnell, E. 1985. Some mechanisms of salt tolerance in crop plants. Plant Soil 89: 15–40.

    Article  CAS  Google Scholar 

  • Gorham, J., Hughes, L.L.,&Wyn Jones, R.G. 1980. Chemical composition of salt-marsh plants from Ynys-Mon (Anglesey): the concept of physiotypes. Plant, Cell and Environment, 3: 309–318.

    CAS  Google Scholar 

  • Gorham, J., Randall, P.J., Delhaize, E., Richards, R.A.,&Munns, R. 1993. Genetics and physiology of enhanced K/Na discrimination. Genetic Aspects of Plant Mineral Nutrition: Developments in Plant and Soil Sciences, 50: 151–158.

    Google Scholar 

  • Gorham, J. 1996. Mechanisms of salt tolerance of halophytes. In R. Choukr-Allah, C.V. Malcolm&Hamdy, (Eds.). Halophytes and Biosaline Agriculture. pp 31–53. New York, New York:Marcel Dekker,.

    Google Scholar 

  • Gould, F.W.&Shaw, R.B. 1983. Grass Systematics, 2nded. College Station, TX:Texas A&M University Press. 1–15 pp.

    Google Scholar 

  • Greenway, H., Gunn, A.,&Thomas, D.A. 1966. Plant response to saline substrates. VIII. Regulation of ion concentration in salt sensitive and halophytic species. Australian Journal Biological Science, 19: 741–756.

    CAS  Google Scholar 

  • Greenway, H.,&Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review Plant Physiology, 31: 149–190.

    Article  CAS  Google Scholar 

  • Harinasut, P., Tsutsui, K., Takabe, T., Nomura, M., Kishitani, S.,&Takabe, T. 1994.Glycinebetaine enhances rice salt tolerance. In P. Mathis (Ed.). Photosynthesis: From Light to Biosphere, Vol IV. pp 733–736. Dordrecht, The Netherlands:.Kluwer Academic Press.

    Google Scholar 

  • Hamdy. A. 1996. Saline irrigation: Assessment and management techniques. In R Choukr-Allah, C. V. Malcom, & A. Hamdy, (Eds.) Halophytes and Biosaline Agriculture. pp 147–180. New York, New York: Marcel Dekker.

    Google Scholar 

  • Hannon, N.J.,&Barber, H.N. 1972. The mechanism of salt tolerance in naturally selected populations of grasses. Search, 3: 259–260.

    CAS  Google Scholar 

  • Harivandi, M.A., Butler, J.D.,&Wu, L. 1992. Salinity and turfgrass culture. In D. V. Waddington, R. N. Carrow.,& R. C. Shearman (Eds.). Turfgrass. pp 207–229. Madison, Wisconsin: ASA, CSSA, and SSSA..

    Google Scholar 

  • Hellebust, J.A. 1976. Osmoregulation. Annual Review Plant Physiology, 27: 485–505.

    Article  CAS  Google Scholar 

  • Hitchcock, A.S. 1971. Manual of the Grasses of the United States, 2nd ed., pp 1–14. New York, New York:.Dover Pub., Inc.

    Google Scholar 

  • Jeschke, W.D. 1979. Univalent cation selectivity and compartmentation in cereals In D.L. Laidman,.&R.G. Wyn Jones. (Eds.). Recent Advances in the Biochemistry of Cereals.. pp 37–61. New York, New York: Academic Press.

    Google Scholar 

  • Jeschke, W.D. 1984. K+-Na+exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. In R.C. Staples & G.H. Toenniessen (Eds.). Salinity Tolerance in Plants. pp 37–66. New York, New York: John Wiley&Sons.

    Google Scholar 

  • Jeschke, W.D., Klagges, S., Hilpert, A., Bhatti, A.S.,&Sarwar, G. 1995. Partitioning and flows of ions and nutrients in salt-treated plants ofLeptochloa fuscaL. Kunth. I. Cations and chloride. New Phytologist, 130: 23–35.

    Article  CAS  Google Scholar 

  • Johnson, R.C. 1991. Salinity resistance, water relations, and salt content of crested and tall wheatgrass accessions. Crop Science, 31: 730–734.

    CAS  Google Scholar 

  • Kemp, P.R.,&Cunningham, G.L. 1981. Light, temperature and salinity effects on growth, leaf anatomy and photosynthesis ofDistichlis spicata(L.) Greene. American Journal Botany, 68: 507–516.

    Article  Google Scholar 

  • Khan, M.A., Ungar, I.A.,&Showalter, A.M. 1999. Effects of salinity on growth, ion content, and osmotic relations inHalopyrum mucronatum(L.) Stapf. Journal Plant Nutrition, 22, 191–204.

    CAS  Google Scholar 

  • Khan, A.H.&Marshall, C. 1981. Salt tolerance within populations of chewing fescue (Festuca rubraL.). Communications Soil Science Plant Analyist, 12(12): 1271–1281.

    CAS  Google Scholar 

  • Kramer, D. 1984. Cytological aspects of salt tolerance in higher plants. In, R.C Staples.&G.H. Toenniessen, (Eds.) Salinity Tolerance in Plants. pp 3–15. New York, New York:John Wiley&Sons.

    Google Scholar 

  • Leigh, R.A., Ahmad, N.,&Wyn Jones, R.G. 1981. Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles. Planta, 153: 34–41.

    Article  CAS  Google Scholar 

  • Lessani, H.,&Marschner, H. 1978. Relation between salt tolerance and long-distance transport of sodium and chloride in various crop species. Australian Journal Plant Physiology, 5: 27–37.

    Article  CAS  Google Scholar 

  • Levering, C.A.,&Thomson, W.W. 1971. The ultrastructure of the salt gland ofSpartina foliosa. Planta, 97: 183–196.

    Article  Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stresses, Vol. II. pp 35–50. New York, NewYork: Academic Press.

    Google Scholar 

  • Liphshchitz, N.,&Waisel, Y. 1974. Existence of salt glands in various genera of the Gramineae. New Phytologist, 73: 507–513.

    Article  Google Scholar 

  • Liphschitz, N.,&Waisel, Y. 1982. Adaptation of plants to saline environments: salt excretion and glandular structure In D.N Sen,.&K.S. Rajpurohit, (Eds.). Tasks for Vegetation Science, Vol. 2: Contributions to the Ecology of Halophytes. pp 197–214. The Hague,Netherlands:. W. Junk Publisher.

    Google Scholar 

  • Maas, E.V. 1986. Salt tolerance of plants. Applied Agriculture Research, 1: 12–26.

    Google Scholar 

  • Maas, E. V.&Hoffman, G.J. (1977). Crop salt tolerance-current assessment. Journal of Irrigration Drainage Div ASCE, 103: 115–132.

    Google Scholar 

  • Marcum, K.B. 1999. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Science, 39: 1153–1160.

    Google Scholar 

  • Marcum, K.B. 2003. USGA Turf and Environmental Research Online.athttp://www.usga.org/turf/

  • Marcum, K.B., & Murdoch, C.L. 1992. Salt tolerance of the coastal salt marsh grass,Sporobolus virginicus(L.) Kunth. New Phytologist, 120: 281–288.

    Article  CAS  Google Scholar 

  • Marcum, K.B.,&Murdoch, C.L.1990a Growth responses, ion relations, and osmotic adaptations of eleven C4turfgrasses to salinity. Agronomy Journal, 82: 892–896.

    Google Scholar 

  • Marcum, K.B.,&Murdoch, C.L. 1990b. Salt glands in the Zoysieae. Annuals Botany, 66: 1–7.

    Google Scholar 

  • Marcum, K.B.&Murdoch, C.L. 1994. Salinity tolerance mechanisms of six C4turfgrasses. Journal American Society Horticultural Science, 119: 779–784.

    CAS  Google Scholar 

  • Marcum, K.B., Anderson, S.J.,&Engelke, M.C. 1998. Salt gland ion secretion: A salinity tolerance mechanism among five zoysia grass species. Crop Science, 3: 806–810

    Google Scholar 

  • Mumtaz, S., Maqvi, S.S.M., Shereen, A.,&Khan, M.A. 1995. Proline accumulation in wheat seedlings subjected to various stresses. Acta Physiology Plant, 17: 17–20.

    CAS  Google Scholar 

  • Oross, J. W.,&Thomson. W.W. 1982a. The ultrastructure ofCynodonsalt glands: the apoplast. European Journal Cell Biollogy, 28: 257–263.

    CAS  Google Scholar 

  • Oross, J.W.&Thomson, W.W. 1982b. The ultrastructure of the salt glands ofCynodonandDistichlis(Poaceae). American Journal Botany, 69(6): 939–949.

    Article  Google Scholar 

  • Naidoo, G.,&Naidoo, Y. 1998. Salt tolerance inSporobolus virginicus: the importance of ion relations and salt secretion. Flora-Jena, 193: 337–344.

    Google Scholar 

  • Naidoo, Y.,&Naidoo, G. 1999. Cytochemical localisation of adenosine triphosphatase activity in salt glands ofSporobolus virginicus(L.) Kunth. South African Journal Botany, 65: 370–373.

    CAS  Google Scholar 

  • Oldeman, L.R., van Engelen, V.W. P.,&Pulles, J.H.M. 1991. The extent of human-induced soil degradation. In L.R.Oldeman, R.T.A. Hakkeling,&W.G Sombroek,. (Eds.) World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note. pp 27–33. Wageningen, Netherlands: International Soil Reference and Information Centre.

    Google Scholar 

  • O'Leary, J.W. 1971. Physiological basis for plant growth inhibition due to salinity. In W.G. McGinnies, B.J. Goldman,&P. Paylore. (Eds.). Food, Fiber and the Arid Lands. pp 331–336. Tucson, Arizona:University of Arizona Press.

    Google Scholar 

  • Parrondo, R.T., Gosselink, J.G.,&Hopkinson.C.S. 1978. Effects of salinity and drainage on the growth of three salt marsh grasses. Botanical Gazzette. 139: 102–107.

    Article  CAS  Google Scholar 

  • Peacock, C.H.,&Dudeck, A.E. 1985. A comparative study of turfgrass physiological responses to salinity. International Turfgrass Research Journal, 5: 821–829.

    Google Scholar 

  • Pollak, G.,&Waisel, Y. 1970. Salt secretion inAeluropus litoralis(Willd.) Parl. Annuals Botany. 34: 879–888.

    CAS  Google Scholar 

  • Pollak, G.,&Waisel, Y. 1979. Ecophysiological aspects of salt excretion inAeluropus litoralis. Physiology Plant, 47: 177–184.

    Article  CAS  Google Scholar 

  • Ramakrishnan, P.S.,&Nagpal, R. 1973. Adaptation to excess salts in an alkaline soil population ofCynodon dactylon(L.) Pers. Journal Ecology, 61: 369–381.

    Article  CAS  Google Scholar 

  • Reid, S.D., Koski, A.J.,&Hughes, H.G. 1993. Buffalograss seedling screening invitro for Na Chloride tolerance. Horticulture Science, 28: 536.

    Google Scholar 

  • Rhodes, D.,&Hanson,A.D. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants Annual Review Plant Physiology Plant Molecular Biology, 44: 357–384.

    Article  CAS  Google Scholar 

  • Saneoka, H.C., Nagasaka, C., Hahn, D.T., Yang, W.J., Premachandra, G.S., Joly, R.J.,&Rhodes, D. 1995. Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiology, 107: 631–638.

    PubMed  CAS  Google Scholar 

  • Szabolcs. I. 1989 Salt-Affected Soils. pp 5–30. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Taleisnik, E.L. 1989. Sodium accumulation inPappophorumI. Uptake, transport and recirculation. Annuals Botany, 63: 221–228.

    Google Scholar 

  • Taleisnik, E.L.&Anton, A.M. 1988. Salt glands inPappophorum(Poaceae). Annuals Botany, 62: 383–388.

    Google Scholar 

  • Torello, W.A.,&Symington, A.G. 1984. Screening of turfgrass species and cultivars for Na Chloride tolerance. Plant Soil, 82: 155–161.

    Article  CAS  Google Scholar 

  • U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. In L.A. Richards (Ed.) USDA Handbook 60. pp 100–130. Washington, DC: U.S. Gov. Printing Office.

    Google Scholar 

  • Waisel, Y. 1972. Biology of Halophytes. pp. 141–165. New York, New York: Academic Press.

    Google Scholar 

  • Waisel, Y. 1985. The stimulating effects of Na Chloride on root growth of Rhodes grass (Chloris gayana). Physiology Plant, 64: 519–522.

    Article  Google Scholar 

  • Warwick, N.W. M.&Halloran, G.M. 1991. Variation in salinity tolerance and ion uptake in accessions of brown beetle grass [Diplachne fusca(L.) Beauv.]. New Phytologist, 119: 161–168.

    Article  CAS  Google Scholar 

  • Weimberg, R.,&Shannon, M.C. 1988. Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiology Plant, 73: 232–237.

    Article  CAS  Google Scholar 

  • de Wet, J. M.J,.&Harlan, J.R. 1970. Biosystematics ofCynodonL.C. Rich. (Gramineae). Taxon, 19: 565–569

    Article  Google Scholar 

  • Wieneke, J., Sarwar, G.,&Roeb, M. 1987. Existence of salt glands on leaves of Kallar grass (Leptochloa fuscaL. Kunth.). Journal Plant Nutrition, 10: 805–820.

    Article  CAS  Google Scholar 

  • Wood, J.N.,&Gaff, D.F. 1989. Salinity studies with drought-resistant species ofSporobolus. Oecologia 78:559–564.

    Article  Google Scholar 

  • Worku, W.,&Chapman, G.P. 1998. The salt secretion physiology of a Chloridoid grass,Cynodon dactylon(L.) Pers., and its implications. Sinet, 21: 1–16.

    Google Scholar 

  • Wu, L. 1981. The potential for evolution of salinity tolerance inAgrostis stoloniferaL. andAgrostis tenuisSibth. New Phytologist, 89: 471–486.

    Article  Google Scholar 

  • Wu, L.,&Lin, H. 1993. Salt concentration effects on buffalograss germplasm, seed germination, and seedling establishment. International Turfgrass Research Journal, 7: 883–828.

    Google Scholar 

  • Wyn Jones, R.G. 1984. Phytochemical aspects of osmotic adaptation. In B.N. Timmerman. (Ed.). Recent Advances in Phytochemistry, Vol. 18, Phytochemical Adaptations to Stress. pp 55–78. New York, New York: Plenum Press.

    Google Scholar 

  • Wyn Jones, R.G.,&Gorham, J. 1983. Osmoregulation. In O.L. Lange, P.S Nobel, C.B Osmond&H. Ziegler. (Eds.). Physiological Plant Ecology III. Responses to the Chemical and Biological Environment. pp 35–58. Berlin, Germany:Springer-Verlag

    Google Scholar 

  • Wyn Jones, R.G.,&Gorham, J. 1989. Use of physiological trains in breeding for salinity tolerance. In F.W.G Barer.. (Ed.) Drought Resistance in Cereals. pp 95–106, Wallingford, UK:CAB International.

    Google Scholar 

  • Wyn Jones, R.G., Brady, C.J.,&Speirs, J. 1979. Ionic and osmotic relations in plant cells. In D.L Laidman., & R.G. Wyn Jones, (Eds.). Recent Advances in the Biochemistry of Cereals. pp 63–103. New York, New York: Academic Press..

    Google Scholar 

  • Yancy, P.H. 1994. Compatible and counteracting solutes. In K. Strange, (Ed.) Cellular and Molecular Physiology of Cell Volume Regulation. pp. 81–109. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Yang, Y.W., Newton, R.J.,&Miller, F.R. 1990. Salinity tolerance of Sorghum:I. Whole plant response to sodium chloride inS. bicolorandS. halepense. Crop Science, 30: 775–781.

    CAS  Google Scholar 

  • Yeo, A.R. 1983. Salinity resistance: Physiologies and prices. Physiology Plant, 58: 214–222.

    Article  CAS  Google Scholar 

  • Yeo, A.R.,&Flowers, T.J. 1984. Mechanisms of salinity resistance in rice and their role as physiological criteria in plant breeding. In R.C. Staples&G.H. Toenniessen (Eds.). Salinity Tolerance in Plants. pp 151–171. New York, New York: John Wiley&Sons.

    Google Scholar 

  • Yeo, D. Kramer, A.R., Lauchli, A.,&Gullasch, B. 1977. Ion distribution in salt-stressed matureZea Maysroots in relation to ultrastructure and retention of sodium. Journal Experimental Botany. 28: 17–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Marcum, K.B. (2008). Saline Tolerance Physiology In Grasses. In: Khan, M.A., Weber, D.J. (eds) Ecophysiology of High Salinity Tolerant Plants. Tasks for Vegetation Science, vol 40. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4018-0_11

Download citation

Publish with us

Policies and ethics