Skip to main content

Non-Human Primate Models of Mesenchymal Stem Cell Transplantation

  • Chapter
Book cover Genetic Engineering of Mesenchymal Stem Cells
  • 687 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–147.

    Article  CAS  PubMed  Google Scholar 

  2. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  3. Gerson SL. Mesenchymal stem cells: no longer second class marrow citizens [news; comment]. Nat Med. 1999;5(3):262–264.

    Article  CAS  PubMed  Google Scholar 

  4. Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.

    CAS  PubMed  Google Scholar 

  5. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17(4):331–340.

    Article  CAS  PubMed  Google Scholar 

  6. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–650.

    Article  CAS  PubMed  Google Scholar 

  7. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–884.

    Article  CAS  PubMed  Google Scholar 

  8. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 2000;97(7):3213–3218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol. 1999;107(2):275–281.

    Article  CAS  PubMed  Google Scholar 

  10. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem. 1999;72(4):570–585.

    Article  CAS  PubMed  Google Scholar 

  11. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem. 1999;75(3):424–436.

    Article  CAS  PubMed  Google Scholar 

  12. Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001;29(2):244–255.

    Article  CAS  PubMed  Google Scholar 

  13. Bartholomew A, Patil S, Mackay A, et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther. 2001;12(12):1527–1541.

    Article  CAS  PubMed  Google Scholar 

  14. Dexter TM. Stromal cell associated haemopoiesis. J Cell Physiol Suppl. 1982;1:87–94.

    Article  CAS  PubMed  Google Scholar 

  15. Owen m. Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA, ed.. Bone and Mineral Research. London: Elsevier; 1985:1–25.

    Google Scholar 

  16. Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988;10:63–76.

    Article  CAS  PubMed  Google Scholar 

  17. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60.

    CAS  PubMed  Google Scholar 

  18. Teixido J, Hemler ME, Greenberger JS, Anklesaria P. Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest. 1992;90(2):358–367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Deryugina EI, Muller-Sieburg CE. Stromal cells in long-termcultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol. 1993;13(2):115–150.

    CAS  PubMed  Google Scholar 

  20. Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest. 2000;105(12):1663–1668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–192.

    Article  CAS  PubMed  Google Scholar 

  22. Lemischka IR, Moore KA. Stem cells: interactive niches. Nature. 2003;425(6960):778–779.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–841.

    Article  CAS  PubMed  Google Scholar 

  24. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–846.

    Article  CAS  PubMed  Google Scholar 

  25. Anklesaria P, FitzGerald TJ, Kase K, Ohara A, Greenberger JS. Improved hematopoiesis in anemic Sl/Sld mice by splenectomy and therapeutic transplantation of a hematopoietic microenvironment. Blood. 1989;74(3):1144–1151.

    CAS  PubMed  Google Scholar 

  26. Anklesaria P, Kase K, Glowacki J, et al. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc Natl Acad Sci USA. 1987;84(21):7681–7685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kapur R, Majumdar M, Xiao X, McAndrews-Hill M, Schindler K, Williams DA. Signaling through the interaction of membrane-restricted stem cell factor and c-kit receptor tyrosine kinase: genetic evidence for a differential role in erythropoiesis. Blood. 1998;91(3):879–889.

    CAS  PubMed  Google Scholar 

  28. Chamberlin W, Barone J, Kedo A, Fried W. Lack of recovery of murine hematopoietic stromal cells after irradiation-induced damage. Blood. 1974;44(3):385–392.

    CAS  PubMed  Google Scholar 

  29. Fried W, Chamberlin W, Kedo A, Barone J. Effects of radiation on hematopoietic stroma. Exp Hematol. 1976;4(5):310–314.

    CAS  PubMed  Google Scholar 

  30. Carlo-Stella C, Tabilio A, Regazzi E, et al. Effect of chemotherapy for acute myelogenous leukemia on hematopoietic and fibroblast marrow progenitors. Bone Marrow Transplant. 1997;20(6):465–471.

    Article  CAS  PubMed  Google Scholar 

  31. Domenech J, Roingeard F, Binet C. The mechanisms involved in the impairment of hematopoiesis after autologous bone marrow transplantation. Leuk Lymphoma. 1997;24(3–4):239–256.

    CAS  PubMed  Google Scholar 

  32. O’Flaherty E, Sparrow R, Szer J. Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant. 1995;15(2):207–212.

    PubMed  Google Scholar 

  33. Galotto M, Berisso G, Delfino L, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol. 1999;27(9):1460–1466.

    Article  CAS  PubMed  Google Scholar 

  34. Hashimoto F, Sugiura K, Inoue K, Ikehara S. Major histocompatibility complex restriction between hematopoietic stem cells and stromal cells in vivo. Blood. 1997;89(1):49–54.

    CAS  PubMed  Google Scholar 

  35. Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED. Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol. 1999;27(10):1569–1575.

    Article  CAS  PubMed  Google Scholar 

  36. Almeida-Porada G, Porada CD, Tran N, Zanjani ED. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood. 2000;95(11):3620–3627.

    CAS  PubMed  Google Scholar 

  37. El-Badri NS, Wang BY, Cherry Good RA. Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol. 1998;26(2):110–116.

    CAS  PubMed  Google Scholar 

  38. Kushida T, Inaba M, Takeuchi K, Sugiura K, Ogawa R, Ikehara S. Treatment of intractable autoimmune diseases in MRL/lpr mice using a new strategy for allogeneic bone marrow transplantation. Blood. 2000;95(5):1862–1868.

    CAS  PubMed  Google Scholar 

  39. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature. 1987;328(6129):429–432.

    Article  CAS  PubMed  Google Scholar 

  40. Laver J, Jhanwar SC, O’Reilly RJ, Castro-Malaspina H. Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood. 1987;70(6):1966–1968.

    CAS  PubMed  Google Scholar 

  41. Santucci MA, Trabetti E, Martinelli G, et al. Host origin of bone marrow fibroblasts following allogeneic bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant. 1992;10(3):255–259.

    CAS  PubMed  Google Scholar 

  42. Gordon MY. The origin of stromal cells in patients treated by bone marrow transplantation. Bone Marrow Transplant. 1988;3(4):247–251.

    CAS  PubMed  Google Scholar 

  43. Agematsu K, Nakahori Y. Recipient origin of bone marrow-derived fibroblastic stromal cells during all periods following bone marrow transplantation in humans. Br J Haematol. 1991;79(3):359–365.

    Article  CAS  PubMed  Google Scholar 

  44. Cilloni D, Carlo-Stella C, Falzetti F, et al. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood. 2000;96(10):3637–3643.

    CAS  PubMed  Google Scholar 

  45. Keating A, Singer JW, Killen PD, et al. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature. 1982;298(5871):280–283.

    Article  CAS  PubMed  Google Scholar 

  46. Awaya N, Rupert K, Bryant E, Torok-Storb B. Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol. 2002;30(8):937–942.

    Article  PubMed  Google Scholar 

  47. Koc ON, Peters C, Aubourg P, et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol. 1999;27(11):1675–1681.

    Article  CAS  PubMed  Google Scholar 

  48. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrowderived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309–313. See comments.

    Article  CAS  PubMed  Google Scholar 

  49. Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;97(5):1227–1231.

    Article  CAS  PubMed  Google Scholar 

  50. Koc ON, Lazarus HM. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant. 2001;27(3):235–239.

    Article  CAS  PubMed  Google Scholar 

  51. Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H. Isolation of multi-potent mesenchymal stem cells from umbilical cord blood. Blood. 2003;5:1670.

    Google Scholar 

  52. Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother. 1997;6(5):447–455.

    CAS  PubMed  Google Scholar 

  53. Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5(11):959–966.

    Article  CAS  PubMed  Google Scholar 

  54. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002;416(6880):545–548.

    Article  CAS  PubMed  Google Scholar 

  55. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow-regenerates liver by cell fusion. Nature. 2003;422(6934):901–904.

    Article  CAS  PubMed  Google Scholar 

  56. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416(6880):542–545.

    Article  CAS  PubMed  Google Scholar 

  57. Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. PNAS. 2003;100(90001):11917–11923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422(6934):897–901.

    Article  CAS  PubMed  Google Scholar 

  59. Pereira RF, Halford KW, O’Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA. 1995;92(11):4857–4861.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Mosca JD, Hendricks JK, Buyaner D, et al. Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop. 2000;379(suppl):S71–S90.

    Article  PubMed  Google Scholar 

  61. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8):2999–3001.

    Article  CAS  PubMed  Google Scholar 

  62. Mahmud N, Pang W, Devine SM, et al. Unrelated allogeneic mesenchymal stem cell grafts are capable of engrafting in non-human primates. Blood. 2002;100(11):133a.

    Google Scholar 

  63. Klyushnenkova E, Shustova V, Mosca J, Moseley A, McIntosh K. Human mesenchymal stem cells induce unresponsiveness in preactivated but not naive alloantigen specific T cells. Exp Hematol. 1999;27(7):122.

    Google Scholar 

  64. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–48.

    Article  PubMed  Google Scholar 

  65. Ossevoort MA, Lorre K, Boon L, et al. Prolonged skin graft survival by administration of anti-CD80 monoclonal antibody with cyclosporin A. J Immunother. 1999;22(5):381–389.

    Article  CAS  PubMed  Google Scholar 

  66. Goodman ER, Fiedor PS, Fein S, Athan E, Hardy MA. Fludarabine phosphate: a DNA synthesis inhibitor with potent immunosuppressive activity and minimal clinical toxicity. The American Surgeon. 1996;62(6):435–442.

    CAS  PubMed  Google Scholar 

  67. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–3843.

    Article  PubMed  Google Scholar 

  68. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–3844.

    Article  CAS  PubMed  Google Scholar 

  69. Kim D-W, Chung Y-J, Kim T-G, Kim Y-L, Oh I-H. Cotransplantation of third-party mesenchymal stromal cells can alleviate one-donor predominance and increase engraftment from double cord transplantation. Blood. 2003;5:1601.

    Google Scholar 

  70. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–3729.

    Article  CAS  PubMed  Google Scholar 

  71. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75(3):389–397.

    Article  CAS  PubMed  Google Scholar 

  72. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76(8):1208–1213.

    Article  PubMed  Google Scholar 

  73. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: Functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol. 2003;171(7):3426–3434.

    Article  CAS  PubMed  Google Scholar 

  74. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–264.

    Article  CAS  PubMed  Google Scholar 

  75. Keating A, Berkahn L, Filshie R. A phase I study of the transplantation of genetically marked autologous bone marrow stromal cells. Hum Gene Ther. 1998;9(4):591–600.

    Article  CAS  PubMed  Google Scholar 

  76. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–74.

    Article  CAS  PubMed  Google Scholar 

  77. Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson disease. Hum Gene Ther. 1999;10(15):2539–2549.

    Article  CAS  PubMed  Google Scholar 

  78. Allay JA, Dennis JE, Haynesworth SE, et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther. 1997;8(12):1417–1427.

    Article  CAS  PubMed  Google Scholar 

  79. Hurwitz DR, Kirchgesser M, Merrill W, et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther. 1997;8(2):137–156.

    Article  CAS  PubMed  Google Scholar 

  80. Wang G, Lee K, Liu L, et al. Human erythropoietin gene delivery using adult mesenchymal stem cells can prevent drug induced anemia in NOD/SCID mouse model. Blood. 1999;94:398a.

    Google Scholar 

  81. Bartholomew A, Sturgeon C, Siatskas M, et al. Genetically modified mesenchymal stem cells can effectively deliver bioactive erythropoietin in the baboon. Blood. 1999;94:378a.

    Google Scholar 

  82. Dunbar CE, Kohn DB, Schiffmann R, et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: in vivo detection of transduced cells without myeloablation. Hum Gene Ther. 1998;9(17):2629–2640.

    Article  CAS  PubMed  Google Scholar 

  83. Huhn RD, Tisdale JF, Agricola B, Metzger ME, Donahue RE, Dunbar CE. Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Hum Gene Ther. 1999;10(11):1783–1790.

    Article  CAS  PubMed  Google Scholar 

  84. Jin HK, Carter JE, Huntley GW, Schuchman EH. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002;109(9):1183–1191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002;30(4):215–222.

    Article  CAS  PubMed  Google Scholar 

  86. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195–201.

    Article  CAS  PubMed  Google Scholar 

  87. Koc ON, Gerson SL. Akt helps stem cells heal the heart. Nat Med. 2003;9(9):1109–1110.

    Article  CAS  PubMed  Google Scholar 

  88. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–3843.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Devine, S.M., Hoffman, R. (2006). Non-Human Primate Models of Mesenchymal Stem Cell Transplantation. In: Nolta, J.A. (eds) Genetic Engineering of Mesenchymal Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3959-X_5

Download citation

Publish with us

Policies and ethics